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Abstract. In the present work we solve explicitly, by means of absolutely and uniformly

convergent series, the second boundary value problem of porous elastostatics for the plane

with a circular hole. For the particular boundary value problem the numerical results is

given.
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We consider the plane D with a circular hole. Let R be the radius of the boundary
S. The system of equations of porous elastostatics is of the form [1]:

µ∆(u(x)) + (λ+ µ)graddiv(u(x)) = grad[β1p1(x) + β2p2(x)],
(m1∆− k)p1(x) + kp2(x) = 0,
kp1(x) + (m2∆− k)p2(x) = 0, x ∈ D,

(1)

where λ, µ,m1,m2, β1, β2 are the known elastic and physical constants [1,2]; u(x) =
(u1(x)), u2(x)) is the displacement of the point x; p1 is the fluid pressure within the
primary pores and p2 is the fluid pressure within the secondary pores; ∆ is the Laplace
operator.

Problem. Find a regular solution U(u1, u2, p1, p2) of system (1) satisfying the
boundary conditions

P (∂z, n)U(z) = f(z),
∂p1(z)

∂n
= f3(z),

∂p2(z)

∂n
= f4(z), z ∈ S, (2)

where
P (∂x, n)U(x) = T (∂x, n)u(x)− n(x)[β1p1(x) + β2p2(x)]

is the stress vector of the theory poroelasticity; T (∂x, n)u(x) = µ∂nu(x)+λn(x)div(u(x))

+µ
∞∑
i=1

ni(x)gradui(x) is the stress vector of the theory of elasticity; f(z) = (f1(z), f2(z)),

f3(z), f4(z) are the given functions on the circumference S, n = n(n1, n2). Vector U(x)
satisfies the following conditions at infinite:

u(x) = O(1), r2∂xku(x) = O(1), r2pi(x) = O(1), k = 1, 2,

where r2 = x21 + x22. On the basic of the system (1), we can write

p1 = a1φ1(x) + p1 + a2φ2(x), p2 = a3φ1(x) + p1 + a4φ2(x) (3)
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where ∆φ1 = 0, (∆ + λ20)φ2 = 0, λ20 = −k(m1 +m2)

m1m2

, a1 = a3 =
2

m1 +m2

,

a2 = − m1 −m2

m1(m1 +m2)
, a4 =

m1 −m2

m2(m1 +m2)
, k,m1,m2 > 0.

Using (3), the conditions (2) allow us to find the values of the functions φ1 and φ2

on S;
∂Rφ1(z) = Ω1(z), ∂Rφ2(z) = Ω2(z), z ∈ S,

where Ω1(z) =
d1
d
,Ω2(z) =

d2
d
, d = a1a4 − a22, d1 = a4f3 − a2f4, d2 = a1f4 − a2f3, ∂n =

[∂r]r=R, r
2 = x21 + x22. The harmonic function φ1(x) is defined by the series

φ1(x) = c−
∞∑
m=1

R

m

(
R

r

)m
(Am cos(mψ) + Bm sin(mψ), (4)

where x = (r, ψ); Am and Bm are the coefficients of the Fourier series for the known
function Ω1(z).

The metaharmonic function φ2(x) is defined by the series [3]:

φ2(x) =
∞∑
m=1

Km(λ0r)

λ0K ′
m(λ0R)

(Cm cos(mψ) +Dm sin(mψ)), (5)

where Km(λ0r) is the MacDonald’s function with an imaginary argument; Cm and Dm

are the Fourier coefficients for the known function Ω2(z);K
′
m(ς) = ∂ςKm(ς), ∂rKm(λ0r) =

λ0K
′
m(λ0), K

′
m(λ0) ̸= 0.

Thus by means of (3), the functions φ1 and φ2 are defined explicitly.
The solution of the first equation of the system (1) with the condition (2) is given

by the sum
u(x) = v0(x) + v(x), (6)

where v0 is the particular solution of equation (1)1,

v0(x) =
1

λ+ 2µ
grad(− a

λ20
φ2 + bφ0), (7)

φ0 is the biharmonic function:∆φ0 = φ1;

φ0(x) =
R3

4

∞∑
m=2

(
1

m(1−m)

(
R

r

)m−2

(Am cos(mψ) +Bm sin(mψ)), (8)

a = (β1 + β2)a1, b = β1a2 + β2a4; Am and Bm are given by (4).
v is the solution of the homogeneous equation which can be found by means of the

formula
v(x) = grad[Φ1(x) + Φ2(x)] + rotΦ3(x), (9)

where △Φ1(x) = 0,△△Φ2(x) = 0,△△Φ3(x) = 0, rot = (−∂x2 , ∂x1),

Φ1(x) =
∞∑
m=0

(
R

r

)m
(Xm1 · νm(ψ)),Φ2(x) =

∞∑
m=0

(
R

r

)m−2

R2(Xm2 · νm(ψ)),
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Φ3(x) =
R2(λ+ 2µ)

µ

∞∑
m=0

(
R

r

)m−2

(Xm2 · sm(ψ)), νm(ψ) = (cos(mψ), sin(mψ),

sm(ψ) = (− sin(mψ), cos(mψ));

X01 =
α0

4(λ+ 2µ)
, X02 =

β0
4(λ+ 2µ)

;

Xm1 and Xm2 is the solution of the following system:

m[λ+ 2µ(m+ 1)]Xm1

+{(λ+ 2µ)(1−m)(2−m+
λ+ 2µ

µ
m)− λ ·m ·R2[m+

λ+ 2µ

µ
(2−m)]}Xm2 = αmR

2,

−m(1 + 2µ)Xm1 +R2[m(3− 2m) +
λ+ 2µ

µ
(m2 − 3m+ 2)]Xm2 = βm

R2

µ
,

m = 1, 2, ...;

αm and βm are the Fourier coefficients of, respectively, the normal and tangential
components of the function Ψ(z) = f(z) + n(z)[aφ2(z) + bφ1(z)]− T (∂z, n)v0(z).

For the numerical solution there is the program. p1(x) and p2(x) are calculated
from (3), (4) and (6); u1(x) and u2(x) are calculated from (6), where v0(x) calculated
from (7), (5) and (8), while v(x) from (9).

Let us consider a particular case with the following conditions:

R = 2; r = 3.2;ψ = 60◦;λ = 7.28 · 106;µ = 3.5 · 106;m1 = 0.88;m2 = 0.22; k = 1;

β1 = 0.3; β2 = 0.4; f1(θ) = 5R(2 cos θ + 3); f2(θ) = 10R(5 sin θ − 7);

f3(θ) =
R

3
(cos θ − 0.1) · 10−1; f4(θ) =

3R

4
(sin θ + 0.1), 0 ≤ θ ≤ 2π.

We obtain that:

u1 = 4.246 · 10−5; u2 = 1.529 · 10−5; p1 = −0.024, p2 = −0.156.
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