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Abstract. A new explicit construction of the stochastic derivative operator for Poisson poly-

nomial functionals is introduced and some basic properties of stochastic derivative operator

and Skorokhod integral are investigated.
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1. In the last quarter of the 20th century, in stochastic analysis and the measure the-
ory the extended stochastic integral (the so-called Skorokhod integral) was constructed,
where the independence of the integrand of the future is replaced by its smoothness
in a certain sense (see, Skorokhod, 1975; Malliavin, 1978, 1997; Ocone, 1984; Nualart,
Zakai, 1986; Nualart, Pardoux, 1988). It turned out (see, Gaveau, Trauber, 1982) that
the operator of Skorokhod stochastic integration coincides with the conjugate operator
of stochastic differentiation in the sense of Malliavin. As is known, the original aim
of Malliavin’s infinite-dimensional stochastic investigation was to study the density
smoothness of a solution of a stochastic differential equation. The situation changed in
1991 when Karatas and Ocone showed how to apply in financial mathematics Ocone’s
theorem of stochastic integral representtation for the functional of diffusion processes.
This theorem was subsequently called the Ocone-Haussmann-Clark formula.

G. Peccati (in 2009) explained how one can combine Stein’s method with Malliavin
calculus, in order to obtain explicit bounds in the normal and Gamma approximation
of functionals of infinite-dimensional Gaussian fields. He showed that the Malliven
operators are linked by several identities, all revolving around a fundamental result
known at the integration by parts formula. This formula contains as a special case
the ”Stein’s identity” E[f ′(ξ) − ξf(ξ)] = 0 (where f is smooth bounded function and
ξ ∼= N(0, 1) ), which enters very naturally in the proof of closability of derivative oper-
ators. Malliavin’s methods for jump processes (in particular, for Levy processes) were
developed by Bichteler, Gravereaux, Jacod, Dermoune, Kree, Wu, Kabanov, Kaminski,
Nualart, Vives, Picard, Di Nunno, Oksendal, Proske.

A further generalization of the Ocone-Clark formula belongs to Ma, Potter and
Martin (1998) for the so-called normal martingale: if F ∈ DM

2,1, then F = EF +
T∫
0

p(DM
t F )dM(t). As seen, this functional demands that the functional F would have

the stochastic derivative. In that case, as different from the Wiener case, it is impossible
to define the stochastic differentiation operator so that the Sobolev structure of the
space DM

2,1 could be obtained. Here the construction of the stochastic derivative is
based on the expansion of a functional into a series of multiple stochastic integrals,
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whereas in the Wiener approach, in addition to this approach, use is also made of the
Sobolev structure of a space.

2. Let
∑

n := {(t1, ..., tn) ∈ Rn
+ : 0 < t1 < · · · < tn}, and for a function f defined on∑

n define the multiple integral with respect toM as In(f) = n!
∫

∑
n

f(t1, ..., tn)dMt1 · · ·Mtn .

Definition 1. (see Definition 3.2 [3]). Let ℜ = σ(Mt; t ≥ 0) be the σ-algebra
generated by a normal martingale M . Let Hn be the n-th homogeneous chaos, Hn =

In(f), where f ranges over all L2(
∑

n). If L2(ℜ, P ) =
∞⊕
n=0

Hn, then we say M possesses

the chaos representation property (CRP).
Let (Ω,ℑ, {ℑt}t≥0, P ) be a filtered probability space satisfying the usual conditions.

We assume that a normal martingaleM with the CRP is given on it and that ℑ is gener-
ated by M . Thus, for any F ∈ L2(ℜ, P ) exists a sequence of functions fn ∈ L2

s([0, 1]
n),

n=1,2,..., such that F =
∞∑
n=0

In(fn). D
M
2,1 := {F =

∞∑
n=0

In(fn) :
∞∑
n=1

nn!∥f∥2L2([0,1]n)
<∞}.

Definition 2. (see [3]). The derivative operator is defined as a linear operator DM
·

from DM
2,1 into L2([0, T ]× Ω) by the relation:

DM
t F :=

∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, 1].

In the Wiener case except definition analogous to abovementioned there is a fol-
lowing equivalent definition: let wt, t ∈ [0, 1] be a standard Wiener process defined on
the canonical probability space (Ω,ℑ, P ), ℑt = σ(ws, 0 ≤ s ≤ t). A smooth functional
will be a random variable F : Ω → R1 of the form F = f(wt1 , wt2 , ..., wtn), where
f ∈ C∞

b (Rn) and t1, t2, ..., tn ∈ [0, 1]. The derivative of F can be defined as (see [2]):

Dw
t F =

∞∑
n=1

∂f
∂xi

(wt1 , wt2 , ..., wtn)I[0,ti](t).

3. Our aim is to study the basic properties of an explicit constructions of the
stochastic derivative operator for compensated Poisson functionals, which was intro-
duced by us in 2008 and which is not based on the chaos expansion of functionals, as
well as in Ma, Protter and Martin’s work. For brevity statements we consider here
only a two-dimensional case so as it is enough for a clarification of our definition on an
example which was considered earlier by Ma, Protter and Martin. It is necessary to
notice that our definition is different from the definition of the Translation Operator
introduced by Nualart and Vives in 1990. We will also investigate some properties of
the Skorokhod integrals (in particular, we will give some examples for calculate of the
Skorokhod integrals). In the end of work we will write down the Stein’s identity in
terms of the stochastic derivative.

Let (Ω,ℑ, {ℑt}t∈[0,T ], P ) be a filtered probability space satisfying the usual condi-
tions. Let Nt be the standard Poisson process (P (Nt = k) = tke−t/k!, k = 0, 1, 2, ...)
and ℑt is generated by N(ℑt = ℑN

t ),ℑ = ℑT . Let Mt be the compensated Poisson
process (Mt = Nt − t). Let us denote ∇xf(x) := f(x + 1) − f(x); ∇xf(MT ) :=
∇xf(x)|x=MT

. For any function of two variables g(·, ·) introduce the designation:
∇2g(x, y) = g(x+ 1, y + 1)− g(x, y).
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It is not difficult to see that we can change in places an order of application of the
operator ∇ : ∇x[∇yg(x, y)] = ∇y[∇xg(x, y)] and the operator of the second order it is
possible to calculate as follows: ∇2g(x, y) = ∇x[∇yg(x, y)] +∇xg(x, y) +∇yg(x, y).

Using the following relations Ms =
T∫
0

I[0,s](u)dMs = I1(I[0,s](·)),

Ms− = I1(I[0,s)(·)) and [M,M ]s = Ns =Ms + s,

by the Definition 2 we can respectively conclude that:

DM
t Ms = DM

t [I1(I[0,s](·))] = I[0,s](t),

DM
t Ms− = I[0,s)(t) and DM

t [M,M ]s = DM
t Ms +DM

t s = I[0,s](t).

Definition 3. (see Definition 4.1 [4]).

D
M

t (Ms)
n := [∇x(x

n)]|x=Mt ·D
M

t Ms := [∇x(x
n)]|x=Mt · I[0,s](t);

for any polynomial function P (x, y) : D
M

t P (Ms,MT ) :=

∇y∇xP (Ms,MT )I[0,s](t)I[0,T ](t) +∇xP (Ms,MT )I[0,s](t) +∇yP (Ms,MT )I[0,T ](t).

Remark 1. As we see if n = 1, then the stochastic derivative for Wiener and
Poisson processes formally are the same. The difference begins from the case n = 2.

Indeed, if we take here n = 2, we obtain that D
M

t M
2
s = ∇xx

2|x=Ms ·D
M

t Ms = (2Ms +
1)I[0,s](t), whereas in the Wiener process cases Dw

t w
2
s =

∂
∂x
x2|x=ws ·Dw

t ws = 2wsI[0,s](t).
This fact can be explained as follows: in the Wiener case in the definition of stochastic
derivative the main component is an usual (classical) derivative, whereas in the Poisson
case the main component is the operator ∇ and if n = 1 we have x′ = ∇x = 1, while
if n = 2, then 2x = (x2)′ ̸= ∇x2 = 2x+ 1.

Theorem 1. For two-dimensional Poisson polynomial functional of the second
degree the above-given two definitions of stochastic derivatives (Definition 3.2 from [3]

and Definition 3.1) are equivalent: D
M

t P2(MS,MT ) = DM
t P2(MS,MT ).

Proof. At first we will prove the equivalence of definitions for double stochastic
integrals, i. e. if F = I2(f2) for some f2 ∈ L2

s([0, T ]
2), then F have the stochastic

derivative, D
M

t F = 2I1(f2(·, t)) = DM
t F and ||DM

t F ||2L2([0,T ]×Ω) = 2 · 2! · ||f2||2L2([0,T ]2)
.

Step 1. Suppose that f2 is a symmetric function of the form f2(t1, t2) = aIA1×A2 +
aIA2×A1 , where A1, A2 ⊂ [0, T ], A1

∩
A2 = ∅. The set of such symmetric function we

denote by E2. For such f2 we have

I2(f2) = 2a

∫ T

0

IA1(s)dMs

∫ T

0

IA2(s)dMs = 2aM(A1)M(A2).

Therefore, due to the Definition 3, one can easily verify that:

D
M

t I2(f2) = 2a[IA1(t)IA2(t) + IA1(t)M(A2) + IA2(t)M(A1)] = 2I1(f2(·, t)). (1)
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Moreover, it is not difficult to see that:

||DM

t F ||2L2([0,T ]×Ω) = 2 · 2! ·
T∫

0

|f2(·, t)||2L2([0,T ])
dt = 2 · 2! · ||f2||2L2([0,T ]2)

. (2)

Step 2. If F = I2(f2) for some f2 ∈ L2
s([0, T ]

2), then F can be approximated in
the L2(Ω)-norm by a sequence of multiple integrals I2(f

n
2 ) of elements fn2 ∈ E2 as

n → ∞. By the relations (1) and (2) applied to fn2 we deduce that the sequence of

derivatives D
M

· f
n
2 converge in L2([0, T ]×Ω), which completes the proof of the theorem

for F = I2(f2).
Step 3. Further it is obvious that if A1 = [0, S] and A2 = [0, T ], then I2(f2) =

2aMSMT . Hence, using the Theorem 4.2 [4], it is not difficult to finish the proof of
theorem.

Proposition 1. DtP (MS,MT ) = [P (MS + 1,MT + 1)− P (MS,MT + 1)]I[0,S](t) +
+[P (MS,MT + 1)− P (MS,MT )]I[0,T ](t) = ∇xP (MS,MT + 1)DtMS +∇yP (MS,MT +
1)DtMT .

Proof. The proof directly follows from Definition 3 after simple transformations.
Now we will formulate a rule of differentiation for multiplication which show that in

Poisson case, in difference from Wiener case, the operator of stochastic differentiation
doesn’t satisfy the property of a usual derivative.

Proposition 2. For any polynomial functions F (x, y) and G(x, y) we have

Dt[F (MS,MT )G(MS,MT )] = G(MS,MT )DtF (MS,MT )

+F (MS,MT )DtG(MS,MT ) +DtF (MS,MT )DtG(MS,MT ).

Proof. Due to the Definition 3 it is not difficult to see that

Dt[F (MS,MT )G(MS,MT )] = [F (MS +1,MT +1)G(MS +1,MT +1)−F (MS,MT +1)

×G(MS,MT+1)]I[0,S](t)+[F (MS,MT+1)G(MS,MT+1)−F (MS,MT )G(MS,MT )]I[0,T ](t)

= G(MS,MT )DtF (MS,MT )+F (MS,MT )DtG(MS,MT )+DtF (MS,MT )DtG(MS,MT ).

Remark 2. In the one-dimensional case it easy to see that for any polynomial
functions F (x) and G(x) we have

Dt[F (MT ) ·G(MT )] = F (MT + 1) ·DtG(MT ) +DtF (MT ) ·G(MT ).

Remark 3. In the Wiener case the indicator function of A belongs to Dw
2,1 if

and only if P (A) is equal to zero or one (see, Sekiguchi, Shiota 1985). Consider now
the Poisson case. According to the chain rule (Proposition 2) we can write DIA =
D(IAIA) = 2IADIA + (DIA)

2; DIA(1 − 2IA − DIA) = 0. Hence, DIA = 0 (and due
to the Proposition 4.2 [4] IA = P (A), i.e. P (A) = 0 or 1 as in the Wiener case) or
DIA = 1− 2IA.
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The next theorem,which follows from the Proposition 2, shows to us how it is
possible to bring or take out the random variable respectively in or from the Skorokhod
integral.

Theorem 2. Let ut is Skorokhod integrable and F (x, y) is a polynomial function.
Then F (MS,MT )ut is Skorokhod integrable and we have

T∫
0

F (Ms,MT )utdMt = F (Ms,MT )

T∫
0

utdMt

−
T∫

0

utDt[F (Ms,MT )]dMt −
T∫

0

utDt[F (Ms,MT )]dt, (P − a.s.).

Proposition 3. For the Skorokhod integral the the following relation is valid:

T∫
0

Mn
T dMt = (MT + T )(MT − 1)n −Mn

TT ≡ NT (MT − 1)n −Mn
TT, (n ≥ 0). (3)

Proof. For the proof we will use the principle of mathematical induction. The case
n = 0 is trivial. If n = 1 , using the Theorem 2, we easily see that:

T∫
0

MTdMt =M2
T −MT − T = (MT + T )(MT − 1)−MTT.

Suppose now that the relation (3) is true for n− 1 and verify that (3) is fulfilled. Due
to the Theorem 2, using the induction assumption, one can easily verify that

T∫
0

Mn
T dMt =MT

T∫
0

Mn−1
T dMt −

T∫
0

Mn−1
T I[0,T ](t)dMt −

T∫
0

Mn−1
T I[0,T ](t)dt

=MT [(MT + T )(MT − 1)n−1 −Mn−1
T T ]− [(MT + T )(MT − 1)n−1 −Mn−1

T T ]−Mn−1
T T

= (MT + T )(MT − 1)n−1MT −Mn
TT − (MT + T )(MT − 1)n−1 +Mn−1

T T −Mn−1
T T

= (MT + T )(MT − 1)n −Mn
TT = NT (MT − 1)n −Mn

TT.

Corollary 1. For any polynomial function Pn(x) =
n∑
i=0

aix
i the following relation

is valid:
T∫
0

Pn(MT )dMt = (MT + T )Pn(MT − 1) − TPn(MT ) = MTPn(MT − 1) −

TDt[Pn(MT − 1)].



118 Purtukhia O., Jaoshvili V.

Proposition 4. a)
t∫
0

MtM
n
T dMs = (MT − 1)n(M2

t − Mt − t) − tMt

n−1∑
i=0

(MT −

1)iMn−1−i
T ;

b)
t∫
0

Mn
t−I[0,t)(s)dMs =

∫
[0,t)

Mn
t−dMs = (Mt− + t)(Mt− − 1)n − tMn

t−;

c)
t∫
0

Mt−MTdMs = (MT − 1)(Mt−Mt −Mt− − t)− tMt−;

d)
t∫
0

Mt−M
n
t−I[0,t](s)dMs = (MT − 1)n(M2

t− −Mt− − t)− tMt−
n−1∑
i=0

(MT − 1)iMn−1−i
T ;

e)
t∫
0

Ms−(Mt −Ms−)dMs = (Mt − 1)
t∫
0

Ms−dMs −
t∫
0

Ms−ds−
t∫
0

M2
s−dMs.

Remark 4. It is not difficult to see that the ”Stein’s identity” for the Poisson
random variable NT =MT + T ∼= Po(T ) one can rewrite as follows:

E[T∇f(NT )− (NT − T )f(NT )] = 0.
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