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ON THE ACCURACY OF SOLUTION APPROXIMATION WITH RESPECT TO
A SPATIAL VARIABLE FOR ONE NONLINEAR INTEGRO-DIFFERENTIAL
EQUATION

Peradze J., Dzagania B., Papukashvili G.

Abstract. An initial boundary value problem for a wave equation is considered. To obtain
an approximate solution with respect to a spatial variable the Galerkin method is used and
its error is estimated.
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1. Statement of the problem. Let us consider the initial boundary value
problem
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where «, 7, p, 0, 5 and J are the given constants among which the first four are positive
numbers, while u°(z) and u!(z) are the given functions.

The equation (1) obtained by J. Ball [1] using the Timoshenko [2] theory describes
the vibration of a beam. The problem of construction of an approximate solution for
this equation is dealt with in [3]-]5].

2. Galerkin method. We write an approximate solution of the problem (1), (2)
in the form w,(z,t) = > uy;(t) sin ?, where the coefficients u,;(t) will be found by

=1

the Galerkin method from the system of equations
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with the initial conditions
Ui (0) = al, ul,;(0)=aj, i=1,2,...,n. (4)
1

ul(x) as uP(z) = > af Sin@, p=0,1.
i=1

L

Here aY and a} are the coefficients from the representation of the functions u°(z) and

3. Method error. If
uP(r) € L*(0,L), p=0,1, (5)

then there exists a generalized solution of the problem (1), (2) that is a function u(x,t)
& 1T
representable as a series > w;(t) sin N the coefficients of which satisfy the system of

=1
equations

ull(t) + <5+7 (%)4) u;(t) + {@ (%)4 + (%)2 (ﬁ + pgg (%)21@@)

to g 3 (%) 2 i (D), (t))] wi(t) = 0, (6)

with the initial conditions

u(0) =al, w(0)=aj, i=1,2,.... (7)
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Denote Auy;(t) = uni(t) — ui(t) and assume that under the method error we will
understand the function Aw,(z,t) = > Auy(t) sin ? the L?(0, L)-norm of which we
i=1

want to estimate.
Subtract (6) from (3) and, having multiplied the resulting equality by 2Aw/, (1),
sum it over ¢ = 1,2,...,n. We obtain
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Subtracting (7) from (4) for i = 1,2,...,n, we have
Aun;(0) =0, Aul;(0)=0, i=1,2,...,n. (9)

Our further consideration will be restricted to a more difficult case when g and ¢
are negative numbers. For three other combinations of these numbers we come to a
result analogous to the one given at the end of this paper.

Multiply the equation (3) by 2u/,(¢) and the equation (6) by 2u}(¢). Then sum the
obtained equalities over ¢ = 1,2,...,n in the first case, and over ¢ = 1,2,... in the
second case. As a result, after some transformations, we make the following conclusion.

Lemma 1. The estimates

O (t) < con,  O(t) < co (10)

are valid, where
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Now multiply the equation (6) by 2u;(t) and sum the obtained equality over ¢ =
n+1,n+2, .... After a few transformations we see that the following statement is
true.

Lemma 2. The inequality
Fo(t) < Fa(0)e” (1)
15 fulfilled, where

Fu(t) = i u(t) +a i (%)41%2(75)%-%('5:1(.

i=n-+1

b= (—5+(52+%2> T, w=-f+c OZ\L/_ (U+%(§)2).
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Let us introduce the notation
2

3 2 4 3
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and use (10) and (11) in (8) and (9). Thus we obtain the upper bound for Y Au/A(t) +
=1

1=

> (%)4 Au?,(t). Using it we come to the following result.
=1

Theorem. If the requirement (5) is fulfilled for the functions uP(z), p = 0,1, and
the above-mentioned conditions are fulfilled for the constants «, vy, p, o, B and 9, then
for the Galerkin method error the estimate
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holds, where
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