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Abstract. We prove a Liapunov-Tauber type theorem for the generalized double layer po-

tential in the thermo-electro-magneto-elasticity theory.
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Here we prove a Liapunov-Tauber type theorem for the generalized double layer
potential in the thermo-electro-magneto-elasticity theory. This theorem plays a cru-
cial role in the study of boundary value problems by the boundary integral equation
method.

Similar theorem in the theory of harmonic functions states that the normal deriva-
tive of a harmonic double layer potential has no jump across the integration surface
(see, e.g., [1], [2]). Analogous theorems for a double layer potential of the classical
elasticity and thermoelasticity theory are also well known [3-5].

In this paper, we apply a quite different approach and present a very simplified
proof of the Liapunov-Tauber type theorem for a sufficiently involved system of differ-
ential equations which model elastic solids with regard to electro-magnetic and thermal
effects.

Throughout the paper u = (u1, u2, u3)
⊤ denotes the displacement vector, σij is the

mechanical stress tensor, εkj = 2−1(∂k uj+∂j uk) is the strain tensor, E = (E1, E2, E3)
⊤

andH = (H1, H2, H3)
⊤ are electric and magnetic fields respectively, D = (D1, D2, D3)

⊤

is the electric displacement vector and B = (B1, B2, B3)
⊤ is the magnetic induction

vector, φ and ψ stand for the electric and magnetic potentials and E = − grad φ,
H = − grad ψ; ϑ is the temperature increment, q = (q1, q2, q3)

⊤ is the heat flux vector,
and S is the entropy density.

First we present the field equations of the linear theory of thermo-electro-magneto-
elasticity for anisotropic solids and introduce the corresponding matrix partial differ-
ential operators [6], [7]:

Constitutive relations:

σrj = σjr = crjkl εkl − elrjEl − qlrjHl − λrjϑ, r, j = 1, 2, 3,

Dj = ejkl εkl + κjlEl + ajlHl + pj ϑ, j = 1, 2, 3,

Bj = qjkl εkl + ajlEl + µjlHl +mj ϑ, j = 1, 2, 3,

S = λkl εkl + pk Ek +mkHk + γ ϑ.

Fourier Law: qj = −ηjl ∂lϑ, j = 1, 2, 3.
Equations of motion: ∂jσrj +Xr = ϱ ∂2t ur, r = 1, 2, 3.
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Quasi-static equations for electro-magnetic fields where the rate of magnetic field is
small (electric field is curl free) and there is no electric current (magnetic field is curl
free): ∂jDj = ϱe , ∂jBj = 0 .
Linearized equation of the entropy balance: T0 ∂tS −Q = −∂jqj.

Here and in what follows the summation over the repeated indices is meant from
1 to 3, unless stated otherwise; ϱ is the mass density, ϱe is the electric density, crjkl
are the elastic constants, ejkl are the piezoelectric constants, qjkl are the piezomagnetic
constants, κjk are the dielectric (permittivity) constants, µjk are the magnetic per-
meability constants, ajk are the coupling coefficients connecting electric and magnetic
fields, pj and mj are constants characterizing the relation between thermodynamic pro-
cesses and electromagnetic effects, λjk are the thermal strain constants, ηjk are the heat
conductivity coefficients, γ = ϱ c T−1

0 is the thermal constant, T0 is the initial reference
temperature, that is the temperature in the natural state in the absence of deformation
and electromagnetic fields, c is the specific heat per unit mass, X = (X1, X2, X3)

⊤ is
a mass force density, Q is a heat source intensity. Further, let Ω+ ⊂ R3 be a bounded
domain with boundary S ∈ C1, κ, 0 < κ ≤ 1; Ω− = R3 \ Ω+.

The corresponding homogeneous pseudo-oscillation equations of the thermo-electro-
magneto-elasticity theory in matrix form read as

A(∂, τ)U(x) = 0 , (1)

where U = (u1, u2, u3, u4, u5, u6)
⊤ := (u, φ, ψ, ϑ)⊤, τ = σ + i ω with σ > 0, and A(∂, τ)

is a nonselfadjoint strongly elliptic matrix differential operator,

A(∂, τ) :=


[crjkl ∂j ∂l − ϱ τ 2 δrk]3×3 [elrj ∂j∂l]3×1 [qlrj ∂j∂l]3×1 [−λrj ∂j]3×1

[−ejkl ∂j∂l]1×3 κjl ∂j ∂l ajl ∂j ∂l −pj ∂j
[−qjkl ∂j∂l]1×3 ajl ∂j ∂l µjl ∂j ∂l −mj ∂j
[−τ T0 λkl ∂l]1×3 τ T0 pl ∂l τ T0ml ∂l ηjl ∂j ∂l − τ T0 γ


6×6

.

We introduce the generalized matrix stress operator

T (∂, n) :=


[crjkl nj ∂l]3×3 [elrj nj ∂l]3×1 [qlrj nj ∂l]3×1 [−λrj nj]3×1

[−ejkl nj ∂l]1×3 κjl nj ∂l ajl nj ∂l −pj nj
[−qjkl nj ∂l]1×3 ajl nj ∂l µjl nj ∂l −mj nj

[0]1×3 0 0 ηjl nj ∂l


6×6

.

For a six vector U = (u, φ, ψ, ϑ)⊤ we have

T (∂, n)U = (σ1j nj, σ2j nj, σ3j nj, −Dj nj, −Bj nj, −qj nj)⊤. (2)

The components of the vector T U given by (2) have the physical sense: the first
three components correspond to the mechanical stress vector in the theory of thermo-
electro-magneto-elasticity, the forth, fifth and sixth ones are respectively the normal
components of the electric displacement vector, magnetic induction vector and heat
flux vector with opposite sign.
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We introduce also the boundary operator P(∂, n, τ) associated with the adjoint
differential operator A∗(∂, τ),

P(∂, n, τ) =


[crjkl nj ∂l]3×3 [−elrj nj ∂l]3×1 [−qlrj nj ∂l]3×1 [τ T0 λrj nj]3×1

[ejkl nj ∂l]1×3 κjl nj ∂l ajl nj ∂l −τ T0 pj nj
[qjkl nj ∂l]1×3 ajl nj ∂l µjl nj ∂l −τ T0mj nj

[0]1×3 0 0 ηjl nj ∂l


6×6

.

Further we define the generalized single and double layer potentials

V (g)(x) =

∫
S

Γ(x− y, τ) g(y) dSy, x ∈ R3 \ S,

W (g)(x) =

∫
S

[P(∂y, n(y), τ)Γ
⊤(x− y, τ)]⊤ g(y) dSy, x ∈ R3 \ S,

where g = (g1, · · · , g6)⊤ is a density vector-function defined on S and Γ(· , τ) is the
fundamental matrix of the operator A(∂, τ) constructed in [7].

With the help of the corresponding Green’s identities, by standard arguments we
can prove the following representation formula for a regular solution to equation (1)

W ({U}+)(x)− V ({T U}+)(x) =
{
U(x) for x ∈ Ω+,
0 for x ∈ Ω−.

Similar representation formula holds in the exterior domain Ω− if a solution of the
pseudo-oscillation equation satisfies the following decay conditions at infinity

uk(x) = O(|x|−2), φ(x) = O(|x|−1), ψ(x) = O(|x|−1), ϑ(x) = O(|x|−2), k = 1, 2, 3.

One can write then the following representation formula for a vector U which is a
solution of the homogeneous equation (1) in Ω±

U(x) = W ([U ]S)(x)− V ([T U ]S)(x), x ∈ Ω+ ∪ Ω−, (3)

where [U ]S = {U}+ − {U}− and [T U ]S = {T U}+ − {T U}− on S.

Now we formulate the Lyapunov-Tauber type theorem in the thermo-electro-magneto-
elasticity theory.

Theorem. Let S ∈ C2,κ, 0 < κ < 1, and h ∈ [C 1, κ′(S)]6 with 0 < κ′ < κ. For all
x ∈ S there holds the following equality

[ T (∂x, n(x))W (h)(x) ]+ = [ T (∂x, n(x))W (h)(x) ]− =: Lh(x),

where the symbols [ · ]± denote the one-sided limits on S from Ω± respectively.
Proof. First of all let us note that for any g ∈ [C 0, κ′(S)]6 and for all x ∈ S we

have the following jump relations for the single and double layer potentials (for details
see [7])

[V (g)(x) ]± = V (g)(x) = H g(x), (4)

[ T (∂x, n(x))V (g)(x) ]± = [∓2−1I6 +K ] g(x), (5)

[W (g)(x) ]± = [±2−1I6 +N ] g(x), (6)
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where

H g(x) :=

∫
S

Γ(x− y, τ) g(y) dSy ,

K g(x) :=

∫
S

[ T (∂x, n(x)) Γ(x− y, τ) ] g(y) dSy ,

N g(x) :=

∫
S

[P(∂y, n(y), τ) Γ
⊤(x− y, τ) ]⊤ g(y) dSy .

The operator H is weakly singular, while K and N are singular integral operators.
Moreover, the operators

V : [C1, κ′(S)]6 → [C2, κ′(Ω±)]6, W : [C1, κ′(S)]6 → [C1, κ′(Ω±)]6, (7)

H : [C1, κ′(S)]6 → [C2, κ′(S)]6, K,N : [C1, κ′(S)]6 → [C1, κ′(S)]6,

are continuous.
Now let us consider the double layer potential U(x) := W (h)(x) with h ∈ [C 1, κ′(S)]6.

Clearly U = W (h) ∈ [C 1, κ′(Ω±)]6 due to the mapping properties (7) and since S ∈ C2,κ.
Consequently, the limits [ T (∂x, n(x))U(x) ]

± ≡ [ T (∂x, n(x))W (h)(x) ]± exist. In ac-
cordance with the above jump relations (4)-(6) and the representation forma (3) we
then derive U(x) = W ([U ]S)(x)− V ([T U ]S)(x), x ∈ Ω±, i.e.,

W (h)(x) = W (h)(x)− V ([TW (h)]S)(x), x ∈ Ω±,

since [U ]S = {W (h)}+ − {W (h)}− = h on S due to (6). Therefore V ([TW (h)]S) = 0
in Ω± and in view of (5) we conclude

{T V ([TW (h)]S)}−−{T V ([TW (h)]S)}+ = [TW (h)]S = {TW (h)}+−{TW (h)}− = 0

on S, which completes the proof. 2
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