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STATEMENT AND EFFECTIVE SOLUTION OF SOME NONCLASSICAL
PROBLEMS OF THERMOELASTICITY FOR A RECTANGULAR

PARALLELEPIPED

Khomasuridze N., Janjgava R.

Abstract. The static thermoelastic equilibrium of an isotropic homogenous rectangular

parallelepiped is considered. Boundary conditions of antisymmetry or symmetry are given

on the lateral faces of the parallelepiped, the upper and lower faces are free from stresses.

Thermal disturbance is given on the lower face. The problem consists in giving a temperature

on the upper face of the parallelepiped so, that on some plane inside the body which is parallel

to the bases the normal displacement would take a given value. The stated nonclassical

problem is solved analytically by the method of separetion of variables.
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Introduction. In the elasticity theory there are quite a number of problems which
could be called nonclassical because the boundary conditions on a part of the boundary
surface are either overdefined or underdefined [1], [2], or the conditions on the boundary
are related to the conditions in the interior of a body (the so-called nonlocal problems)
[3]-[5].

In the present paper, we formulate and solve effectively by the method of separation
of variables the following nonclassical problems of thermoelasticity for the rectangular
parallelepiped.

In the Cartesian system of x, y, z coordinates, we consider the thermoelastic equi-
librium of a homogeneous isotropic body occupying the domain Ω = {0 < x < x1,
0 < y < y1, 0 < z < z1}. The boundary conditions of symmetry or antisymmetry
[6] are given on the lateral faces of Ω; the faces z = 0 and z = z1 are assumed to be
stress-free; a temperature disturbance is given on the face z = 0.

The problem consists in the following: on the face z = z1, define a temperature
such that the function of normal displacements w(x, y, z) of points of some inner surface
z = z2 of the body would take a prescribed value. Naturally, after solving the stated
problem we can easily find the stress-strained state of the considered body.

1. Statement of problems. We consider a given homogeneous isotropic elastic
body, which in the Cartesian system of x, y, z coordinates, occupies the domain Ω =
{0 < x < x1, 0 < y < y1, 0 < z < z1}, where x1, y1, z1 are constants. The considered
body is in the state of stationary thermoelastic equilibrium. On the lateral faces of the
domain Ω the following boundary conditions are given [6]:

for x = xj: a) the conditions of antisymmetry σxx = 0, v = 0, w = 0, T = 0

or

b) the conditions of symmetry u = 0, σxy = 0, σxz = 0, ∂xT = 0;

 (1)
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for y = yj: a) the conditions of antisymmetry σyy = 0, u = 0, w = 0, T = 0

or

b) the conditions of symmetry v = 0, σyx = 0, σyz = 0, ∂yT = 0.

 (2)

On the upper and lower faces of the parallelepiped the following conditions are
given:

for z = zj: σzx = 0, σzy = 0, σzz = 0; (3)

for z = 0: a) T = τ(x, y) or b) ∂zT = τ̃(x, y) or

c) ∂zT +ΘT = τ̃(x, y),

}
(4)

where j = 0, 1, x0 = y0 = z0 = 0; u, v, w are the components of the displacement
vector U⃗ along the x, y, z components, respectively; T is the temperature change in
the elastic body which satisfies the equation

∆T = 0, (5)

where ∆ ≡ ∂xx+∂yy+∂zz; ∂x ≡ ∂
∂x
, ∂y ≡ ∂

∂y
, ∂z ≡ ∂

∂z
; σxx, σyy, σzz are normal stresses;

σxy = σyx, σxz = σzx, σyz = σzy are tangential stresses; Θ is the given constant;
τ(x, y), τ̃(x, y) are the given analytic functions of the variables x and y in the domain
ω = {0 ≤ x ≤ x1, 0 ≤ y ≤ y1}.

The problem consists in that on the face z = z1 we must define a change of the
temperature T in such a manner that on the inner surface of the body z = z2 (0 <
z2 < z1) the condition

w(x, y, z2) = g(x, y) (6)

would be fulfilled, where g(x, y) is the given analytic function of the variables x and y
in the domain ω.

In the absence of mass forces the thermoelastic equilibrium of an isotropic homoge-
neous elastic body is described, as is known [7], by the following differential equation

grad [2(1− ν)div U⃗ − 2(1 + ν)kT ]− (1− 2ν) rot rot U⃗ = 0, (7)

where E is Young’s modulus; ν is Poisson’s ratio; k if the coefficient of linear thermal
expansion.

2. Solution of the stated problems. The solution of the stated problems is
carried out by the method of separation of variables taking into account the results of
the paper [7], where a general solution of the system of equations (7) is represented

through three arbitrary harmonic functions and the function T̃ which is also a solution
of the Laplace equation and is related to a change of the temperature T by

T = ∂zzT̃ . (8)

In the same paper [7], it is shown that in the case of the boundary conditions (1)–

(3) all the above-mentioned harmonic functions, except for T̃ , are equal to zero, while
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displacements and stresses are expressed through the function T̃ as follows:

w = k(1 + ν)∂zT̃ ; (9)

u = −k(1 + ν)∂xT̃ , v = −k(1 + ν)∂yT̃ ; (10)

σzz = σzx = σzy = 0; (11)

σxx = − E

1 + ν
∂yv, σyy = − E

1 + ν
∂xu, σyx =

E

2(1 + ν)
(∂yu+ ∂xv). (12)

Let us first construct the solution of the problem (7), (5), (1a), (2a), (3), (4a).
It is assumed that the antisymmetry conditions are given on all four faces of the
parallelepiped.

Using the method of separation of variables, by virtue of the relation (8) and the

boundary conditions (1a) and (2a) we can represent the function T̃ as

T̃ =
∞∑
m=1

∞∑
n=1

1

γ2mn

(
Amne

−γmnz +Bmne
γmnz

)
sin

πmx

x1
sin

πny

y1
, (13)

where γmn=

√(
πm
x1

)2
+
(
πn
y1

)2
; Amn and Bmn are the constants depending on m and n.

Since the given analytic functions τ(x, y) and g(x, y) satisfy the consistency condi-
tion, we expand them into trigonometric sine-series by the formulas

τ(x, y) =
∞∑
m=1

∞∑
n=1

τmn sin
πmx

x1
sin

πny

y1
, (14)

g(x, y) =
∞∑
m=1

∞∑
n=1

gmn sin
πmx

x1
sin

πny

y1
. (15)

It will be assumed that the Fourier coefficients τmn and gmn satisfy the following con-
ditions

τmn = O

(
1

eγmn(z1−z2)

)
, gmn = O

(
1

eγmnz1

)
. (16)

From (13) with (8) taken into account, for the change of the temperature T we
obtain the expression

T =
∞∑
m=1

∞∑
n=1

(
Amne

−γmnz +Bmne
γmnz

)
sin

πmx

x1
sin

πny

y1
. (17)

Substituting the representation (13) in (9), for the normal displacement w we have

w = k(1 + ν)
∞∑
m=1

∞∑
n=1

1

γmn

(
−Amne−γmnz +Bmne

γmnz
)
sin

πmx

x1
sin

πny

y1
. (18)

Substituting the series (17) and (14) in the boundary condition (4a) and the series
(18) and (15) in the condition (6) and equating the coefficients of identical trigonometric
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functions to each other, for the unknown coefficients Amn and Bmn we obtain the
following system of equations{

Amn +Bmn = τmn,

−Amne
−γmnz2 +Bmne

γmnz2 = γmn

k(1+ν)
wmn, m, n ∈ N.

(19)

Defining the coefficients Amn and Bmn from the system (19) and substituting them
in the formula (17), for the change of the temperature T we obtain the expression

T =
∞∑
m=1

∞∑
n=1

1

ch(γmnz2)

{
ch(γmn(z − z2))τmn +

γmn
k(1 + ν)

sh(γmnz)gmn

}
× sin

πmx

x1
sin

πny

y1
. (20)

It can be easily shown that if the coefficients τmn and gmn satisfy the conditions (16),
then the obtained series (20) converges absolutely and uniformly in the domain Ω.
Moreover, the obtained function T will be an analytic function of the variables x, y, z
in the domain Ω.

Replacing z by z1 in the formula (20), we obtained the desired value of the function
T on the face z = z1. It is the unique solution of the considered problem. It is
not difficult to prove that the obtained value depends continuously on the initial data
provided that the Fourier coefficients of the functions τ ∗(x, y) and g∗(x, y), which are
disturbances of the functions τ(x, y) and g(x, y), also satisfy the conditions (16).

Knowing the function T̃ , by means of the formulas (9)–(16) we can easily define
displacements and stresses in the considered body.

Let us consider the concrete example where the given functions τ(x, y) and g(x, y)
are written as

τ(x, y) = τ22 sin
2πx

x1
sin

2πy

y1
, g(x, y) = w11 sin

πx

x1
sin

πy

y1
.

In that case, the formula (20) implies the following elementary expression for the
function T ,

T =
γ11w11 sh(γ11z)

k(1 + ν) ch(γ11z2)
sin

πx

x1
sin

πy

y1
+
τ22 ch(γ22(z − z2))

ch(γ22z2)
sin

2πx

x1
sin

2πy

y1
.

Let us also write the solution of the problem when the antisymmetry conditions
(1a) and (2a) are given on the parallelepiped faces x = 0 and y = 0, and the symmetry
conditions (1b) and (2b) are given on the faces x = x1 and y = y1. It has the form

T =
∞∑
m=1

∞∑
n=1

1

ch(ηmnz2)

{
ch(ηmn(z − z2))τmn +

γmn
k(1 + ν)

sh(ηmnz)gmn

}
× sin

(2m− 1)πx

2x1
sin

(2n− 1)πy

2y1
.
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The solutions of our other stated nonclassical problems are solved in an absolutely
analogous manner.

To conclude, we indicate that by taking into consideration the results of [7] the
corresponding nonclassical problems of thermoelasticity can be formulated and solved
in a generalized cylindrical system of coordinates, assuming that an elastic body may
transversally isotropic with isotropy plane z = const. We are convinced that the
solution of all these problems may have a practical application.
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