Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 24, 2010

A GENERALIZED NONLOCAL BOUNDARY VALUE PROBLEM IN A SPACE $L_p(\partial\Omega), 1$

Kapanadze J.

Abstract. The generalized nonlocal boundary value problem for Laplace equation is studied.

Keywords and phrases: Generalized nonlocal problem, compact operator, homogeneous equation, $C^{(2,\alpha)}$ -diffeomorfphism, potential.

AMS subject classification: 31B05.

The nonlocal boundary value problem is considered in [1-4] when the closed surface S belongs to the domain Ω ($S \subset \Omega$). In the present paper we consider the case where the intersection $\partial\Omega \cap S$ contains a finite number of points, $z_i \in \partial\Omega \cap S$, $i=1,2,\ldots,N$. The compactness of the operator K, $K\varphi(x)=v_{\varphi}(Z(x)), x\in\partial\Omega, \varphi\in C(\partial\Omega)$ [4] cannot be proved in the space $C(\partial\Omega)$. But the compactness of K can be proved in the space $L_p(\partial\Omega)$, $1 . Assume that <math>\Omega \subset R^3$ is a simply connected bounded domain from the class $C^{(2,\alpha)}$, the closed surface $S \subset \Omega$, $S \in C^{(2,\alpha)}$. Denote $\sigma_k = \{x: |x-z_k| < \delta\} \cap \partial\Omega, \gamma_k = \{\zeta: |\zeta-z_k| < \delta\} \cap S$. Let ν_k be the normal for S and $\partial\Omega$ at the point z_k . If δ is a sufficiently small number, then $m(\gamma_k) < \frac{\varepsilon}{N}$, $m(\sigma_k) < \frac{\varepsilon}{N}$, where m is a two-dimensional Lebesgue measure. Let p_{1k} be the projection of σ_k on the tangential plane P_k at the point z_k , and p_{2k} be the projection of σ_k on P_k . Denote $e'_k = p_{1k}\gamma_k \cap p_{2k}\sigma_k$, $e_k = |z_k - \eta| < r_k$, $r_k = \inf|z_k - \eta|$, $\eta \in \partial e'_k$. Let us define a diffeomorphism in the neighborhood of z_k $\zeta = z_k(x)$ if $p_{1k}(\zeta) = p_{2k}(x) \in e_k$, $\nu_k \perp p_k$.

Let us assume that there exists a $C^{(2,\alpha)}$ -diffeomorphism $\zeta=z(x)$ from $\partial\Omega$ on S that satisfies the condition $z(x)=z_k(x)$ if $p_{2k}(x)\in e_k$.

Assume that the boundary function $f \in L_p(\partial\Omega)$, $1 . One has fined a function <math>\varphi \in L_p(\partial\Omega)$, satisfying the boundary condition

$$\varphi - K\varphi = f,\tag{1}$$

where

$$K\varphi(x) = v_{\varphi}(z(x)) = -\int_{\partial\Omega} \frac{\partial G(Z(x), y)}{\partial \nu_{y}} \varphi(y) dS_{y}$$

Denote

$$I_k(\zeta) = \begin{cases} 1, & p_{1k}\zeta \in e_k \quad (\zeta \in \gamma_k), \\ 0, & \zeta \in S, & p_{1k}\zeta \notin e_k. \end{cases}$$

Thus we obtain a finite-dimensional space

$$\tau(\zeta) = \sum_{k=1}^{N} \alpha_k I_k(\zeta), \quad -\infty < \alpha_k < \infty, \quad k = 1, 2, \dots, N.$$

We define the sweep-out operator for I_k from S on $\partial\Omega$:

$$TI_k(y) = -\int_{S_k} \frac{\partial G(\zeta, y)}{\partial \nu_y} Dz_k^{-1}(\zeta) dS_k, \quad y \in \partial \Omega, \quad |Dz_k^{-1}| \le c_1,$$
$$S_k = \{ \zeta : p_{1k}\zeta \in e_k, \quad \zeta \in \gamma_k \}.$$

Let

$$\tau_{1}(\zeta) = \sum_{k=1}^{N} I_{k}(\zeta), \quad \|\tau_{1}\|_{L_{1}} \leq \sum_{k=1} m(\gamma) < \varepsilon,$$

$$T\tau_{1}(y) = \sum_{k=1}^{N} TI_{k}(y) \in C(\partial\Omega), \quad \|T\tau_{1}\|_{C(\partial\Omega)} \leq c_{2} \|\tau 1\|_{L_{1}} \leq c_{2} \cdot \varepsilon.$$
(2)

Let $\varphi_n \in L_p(\partial\Omega)$, $1 , <math>\|\varphi_n\|_p \le M$, $n = 1, 2, \dots$

$$K\varphi_n(x) = -\int_{\partial\Omega} \frac{\partial G(z(x), y)}{\partial \nu_y} \varphi_n(y) dS_y, \quad x \in \sigma_k, \quad p_{2k}x \in e_k, \quad E_k = \{x : p_{2k}(x) \in e_k\},$$

$$\int_{\bigcup_{k=1}^{N} E_{k}}^{N} |K\varphi_{n}(x)|^{p} dS_{x} = \int_{\bigcup_{k=1}^{N} E_{k}}^{N} \int_{\partial \Omega} \frac{\partial G(z(x), y)}{\partial \nu_{y}} |\varphi_{n}(y)|^{p} dS_{y} dS_{y} \leq \left(\bigcup_{k=1}^{N} = E \right) \\
\leq \int_{\partial \Omega} \int_{E} \frac{\partial G(\zeta, y)}{\partial \nu_{y}} Dz^{-1}(\zeta) dS_{\zeta} |\varphi_{n}(y)|^{p} dS_{y} \leq c_{3} \cdot \varepsilon \sup_{n} \int_{\partial \Omega} |\varphi_{n}(y)|^{p} dS_{y}.$$

Therefore

$$\left(\int_{E} |K\varphi_{n}(x)|^{p} dS_{x}\right)^{\frac{1}{p}} \leq (c_{3} \cdot \varepsilon)^{\frac{1}{p}} \cdot M, \quad F = \bigcup_{k=1}^{n} F_{k}, \quad F_{k} = Z(E_{k}).$$

Thus there exists a subsequence $K\varphi_j, j=1,2,\ldots$, for which we obtain

$$\left| \frac{\partial G(\zeta, y)}{\partial \nu_y} \right| \le \frac{c_4}{|\zeta - y|^2} \quad \zeta \in S - \bigcup_{k=1}^N p_{1k}^{-1}(e_k), \quad y \in \partial\Omega,$$
$$\lim_{j \to \infty} K\varphi_j(x) = K\varphi(x), \quad z(x) \in \Omega.$$

Hence it follows that

$$\sup_{j} |K\varphi_{j}(x)| \le L_{1} < \infty, \quad x \in \partial\Omega - \bigcup_{k=1}^{N} p_{2k}^{-1} e_{k}.$$

Thus K is a compact operator from $L_p(\partial\Omega)$ into $L_p(\partial\Omega)$.

Let us consider the conjugate operator K^* and the corresponding homogeneous equation

$$g - K^*g = 0$$
, $g \in L_q(\partial\Omega)$, $q = \frac{p}{p-1}$.

Let $g_i(i = 1, 2, ..., k)$ solutions for homogeneous equation. Finally let us define the space B_1 of boundary functions:

$$B_1 = \left\{ f : f \in L_p(\partial\Omega), \ \int_{\partial\Omega} f(x)g_i(x)dS_x = 0, \ i = 1, 2, \dots, k \right\}.$$

Theorem. The nonlocal boundary problem (1) in space $L_p(\partial\Omega)$ is solvable if and only if $f \in B_1$.

REFERENCES

- 1. Bitsadze A.V., Samarski A.A., Some elementary generalizations of linear elliptic boundary value problems. (Russian) *Dokl. Akad. Nauk SSSR*, **185**, 4 (1969), 739-740.
 - 2. Bitsadze A.V. Some Classes of Partial Differential Equations. (Russian) Moskow, 1981.
 - 3. Gordeziani D.G. On Methods in Nonlocal Boundary Problems. (Russian) Tbilisi, TSU, 1981.
- 4. Kapanadze D.V. On the Bitsadze-Samarski nonlocal boundary value problem. (Russian) *Differ. Uravn.*, **23**, 3 (1987), 543-545.

Received 6.05.2010; revised 12.10.2010; accepted 18.11.2010.

Author's address:

J. Kapanadze Institute of Geophysics 1, M. Aleksidze St., Tbilisi 0193 Georgia