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ADDITIVE MODELS FOR ONE NONLINEAR DIFFUSION SYSTEM
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Abstract. Nonlinear diffusion parabolic model based on Maxwell’s system is considered.

Joule’s rule and thermal conductivity are taking into account. Semi-discrete averaged additive

models are studied for this system.
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Process of penetration of magnetic field into a substance is accompanied with ther-
mal phenomena, which essentially changes process of diffusion and complicates corre-
sponding system of Maxwell’s equations [1]. Mentioned system, taking into account
Joule’s rule and thermal conductivity, has the following form:

∂θ

∂t
= νm(rotH)2 + div(κ grad θ),

∂H

∂t
= −rot (νmrotH), (1)

where H = (H1, H2, H3) is a vector of the magnetic field, θ - temperature, νm and κ are
characteristics coefficients of the substance. As a rule these coefficients are functions
of argument θ.

The questions of existence, uniqueness, regularity, asymptotic behavior of the solu-
tions and numerical resolution of the initial-boundary value problems to the (1) type
models are discussed in many works (see, for example, [2]-[13] and references therein).

Beside of essential nonlinearity, complexities of the mentioned system (1) is caused
by its multi-dimensionality. This circumstance is complicating to get numerical results
for concrete real problems. Naturally arises the possibility of reduction to suitable
one-dimensional models. Complex nonlinearity dictates also to split along the physical
process and investigate basic model by them. In particular, it is logical to split system
(1) into following two models (see, for example, [3], [13]):

∂H̃

∂t
= −rot (νm(θ̃)rot H̃),

∂θ̃

∂t
= νm(θ̃)(rot H̃)2 (2)

and
∂ ˜̃θ

∂t
= div (κ(˜̃θ)grad ˜̃θ). (3)

In (2) Joule’s rule, while in (3) process of thermal conductivity are considered.
Different type of splitting-up schemes are constructed and investigated for many

models of mathematical physics (see, for example, [14]-[18] and references therein).
Note that, system (2) can be reduced to integro-differential form. This reduction

at first was made in the work [19]. Many works were followed after publication of this
paper (see, for example, [20]-[28] and references therein). The questions of existence,
uniqueness, asymptotic behavior of the solutions and numerical resolution of some kind
of initial-boundary value problems for this type integro-differential models are studied
in these works.
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Investigation of splitting-up schemes along the physical processes for one-dimensional
analog of system (1) is the natural beginning of studding this issue. In this direction
the investigations was made in the works [3] and [13]. In the paper [3] the initial-
boundary value problem with the first kind boundary conditions for the temperature
are considered.

The aim of this note is to construct and study additive analogues bases on models
(2) and (3) for one-dimensional analog of system (1) with one-component magnetic
field with the second kind boundary conditions for the temperature. At the end of this
note we also state additive model for multi-dimensional system (1).

In the domain Q = Ω× (0, T ) let us consider following problem for one-dimensional
analog of system (1):

∂U

∂t
=

∂

∂x

(
V α∂U

∂x

)
,

∂V

∂t
= V α

(
∂U

∂x

)2

+
∂2V

∂x2
,

U(x, t) =
∂V (x, t)

∂x
= 0, (x, t) ∈ ∂Ω× (0, T ),

U(x, 0) = U0(x), V (x, 0) = V0(x) ≥ Const > 0,

(4)

where −1/2 ≤ α ≤ 1/2; U0, V0 are known functions defined on Ω = [0, 1], T is the
fixed positive number.

If we denote V 1/2 =W , 2α = γ, then problem (4) can be rewritten in the following
equivalent form:

∂U

∂t
=

∂

∂x

(
W γ ∂U

∂x

)
,

∂W

∂t
=

1

2
W γ−1

(
∂U

∂x

)2

+
∂2W

∂x2
+

1

W

(
∂W

∂x

)2

, (5)

U(x, t) =
∂W (x, t)

∂x
= 0, (x, t) ∈ ∂Ω× (0, T ),

U(x, 0) = U0(x), W (x, 0) = W0(x) = V
1/2
0 (x),

where −1 ≤ γ ≤ 1.
Let us introduce the uniform grid ωτ = {tj = jτ, j = 0, 1, ..., N} on [0, T ]. Using

the notations:
yt =

yj+1 − yj

τ
, η1 + η2 = 1, η1 > 0, η2 > 0,

y = η1y1 + η2y2, y1t =
yj+1
1 − yj

τ
, y2t =

yj+1
2 − yj

τ
,

let us correspond to the initial-boundary value problem (5) following additive averaged
semi-discrete scheme:

u1t =
d

dx

(
wγ1

du1
dx

)
, η1w1t =

1

2
wγ−1

1

(
du1
dx

)2

,

u2t =
d

dx

(
wγ2

du2
dx

)
, η2w2t =

d2w2

dx2
+

1

w2

(
dw2

dx

)2

,

u01 = u02 = U0,
dw0

1

dx
=
dw0

2

dx
= W0.

(6)

The following statement takes place.
Theorem. If problem (5) has a sufficiently smooth solution, then the solution of

the scheme (6) converges to the solution of problem (5) as τ → 0 and the following
estimate is true ∥∥U(tj)− uj

∥∥+ ∥∥W (tj) + wj
∥∥ = O(τ 1/2).
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Here ∥·∥ is an usual norm of the space L2(0, 1).
Note also that the result analogical to above theorem is true for the following semi-

discrete additive model corresponding again to the problem (5):

ut =
d

dx

(
(η1w

γ
1 + η2w

γ
2 )
du

dx

)
, η1w1t =

1

2
wγ−1

1

(
du

dx

)2

,

η2w2t =
d2w2

dx2
+

1

w2

(
dw2

dx

)2

,

(7)

with suitable initial and boundary conditions.
At last we note that we can also construct additive models analogical to (6) and

(7) for the system (1). For example, after rewriting system (1) in form analogical to
(5):

∂W

∂t
=

1

2
W γ−1(rotH)2 +

1

2W
div(κ gradW ),

∂H

∂t
= −rot(W γrotH). (8)

The averaged semi-discrete scheme for (8) has the following form:

η1w1t =
1

2
wγ−1

1 (rot u)2, ut = −rot(wγ1rot u), η2w2t =
1

2w2

div(κ grad w2). (9)

It is proved that the statement analogical to above formulated theorem is true for
(9) model as well.
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