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Abstract. In the paper we prove the uniqueness theorems for the interior and exterior

Dirichlet and Neumann type boundary value problems of thermoelastostatics for general

anisotropic elastic solids.
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We prove the uniqueness of solutions to the static exterior boundary value problems
of the theory of thermoelasticity of anisotropic bodies. The basic equations read as [1],
[2]:

ckjpq∂j∂qup(x)− βkj∂jϑ(x) = Φk, k = 1, 2, 3, (1)

λpq∂p∂qϑ(x) = Φ4, (2)

where ckjpq = cpqkj = cjkpq are the elastic constants, λpq = λqp are the heat conduc-
tivity coefficients, βpq = βqp are the thermal strain constants, u = (u1, u2, u3)

⊤ is the
displacement vector, ϑ is the temperature function, Φk are mass forces, while Φ4 is a
heat source function.

Let us introduce the natation: U = (u1, u2, u3, ϑ)
⊤ = (u, ϑ)⊤, Φ = (Φ1,Φ2,Φ3,Φ4),

C(∂) = [Ckp(∂)]3×3, Ckp(∂) = ckjpq∂j∂q, Λ(∂) = λpq∂p∂q,

A(∂) := [Akj(∂)]4×4 =

[
C(∂) [−βkj∂j]3×1

0 Λ(∂)

]
4×4

, ∂ = (∂1, ∂2, ∂3), ∂j =
∂

∂xj
.

Then equations (1) and (2) can be rewritten then in matrix form

A(∂)U(x) = Φ. (3)

Further let Ω+ ⊂ R3 is a bounded domain and Ω− = R3 \ Ω+, S = ∂Ω± ∈ C1,α, and
consider the following exterior Dirichlet problem:
Find a vector U = (u, ϑ)⊤ ∈ [C2, α(Ω−)]4 ∩ [C1, α(Ω−)]4 with 0 < α ≤ 1 satisfying the
differential equation (3) and the boundary condition:

[U(x)]− = φ(x), x ∈ S, (4)

where Φ ∈ [C0, α
comp(Ω

−)]4 and φ = (φ1, φ2, φ3, φ4)
⊤ ∈ [C1, α(S)]4 are given vectors.
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It is clear that the Dirichlet type boundary value problem for the temperature
function ϑ(x) is separated:

A44(∂) ϑ(x) = λpq∂p∂qϑ(x) = Φ4(x), x ∈ Ω−, (5)

[ϑ(x)]− = φ4(x), x ∈ S. (6)

If we assume that
ϑ(x) = O(|x|−1) as |x| → ∞,

then for arbitrary Φ4 ∈ C0, α
comp(Ω

−) and φ4 ∈ C1, α(S) the BVP (5)-(6) is uniquely

solvable in the space C2, α(Ω−) ∩ C1, α(Ω−). Moreover, there holds the representation
in Ω− [2], [3]:

ϑ(x) =

∫
S

Γ
(0)
44 (x−y)[∂n(y)ϑ(y)]−dsy−

∫
S

∂n(y)Γ
(0)
44 (x−y)[ϑ(y)]−dsy+

∫
Ω−

Γ
(0)
44 (x−y)Φ4(y)dy,

where ∂n(y) = λpqnq(y)∂p denotes the co-normal derivative and

Γ44(x) =
α0

(Dx , x)
1
2

, α0 = − 1

4π [detA]
1
2

, A = [λpq]3×3, D = A−1 = [dkj]3×3,

is a fundamental solution of the operator A44(∂). Since Φ4 has a compact support, it
follows that we have the following asymptotic formulas

ϑ(x) =
θ0

(Dx, x)1/2
+O(|x|−2), ∂j ϑ(x) = − θ0 djm xm

(Dx, x)3/2
+O(|x|−3) as |x| → ∞,

with some constant θ0.
Thus, if we assume that the the temperature function is known, from (3) and (4)

we arrive at the exterior Dirichlet BVP for the displacement vector u

C(∂)u(x) = Ψ̃ + Φ̃, x ∈ Ω−, (7)

[u(x)]− = φ̃(x), x ∈ S, (8)

where φ̃ = (φ1, φ2, φ3)
⊤ ∈ [C1, α(S)]3,

Φ̃ = (Φ1,Φ2,Φ3)
⊤ ∈ [C0, α

comp(Ω
−)]3, Ψ̃ = (β1j∂jϑ, β2j∂jϑ, β3j∂jϑ )

⊤ ∈ [C0,α (Ω−)]3.

Note that Ψ̃ has not compact support and Ψ̃ = Q̃(x) + θ0P̃ (x) with

Ψ̃(x) = − 1

(Dx, x)3/2
( β1j djℓ xℓ , β2j djℓ xℓ , β3j djℓ xℓ )

⊤, Q̃(x) = O(|x|−3), |x| → ∞.

Since Ψ̃(x) = O(|x|−2) we can not assume that u vanishes at infinity.
Our goal is to establish sufficient conditions insuring the uniqueness of solutions to

the problem (7)-(8) in the space of bounded vectors.
To this end we need several auxiliary propositions [4].
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Lemma 1. Let u = (u1, u2, u3)
⊤ be a bounded solution to the homogeneous differ-

ential equation
C(∂)u(x) = 0, x ∈ Ω−.

Then
u(x) = c+O(|x|−1) as |x| → +∞ ,

where c = (c1, c2, c3)
⊤ is a constant vector.

Lemma 2. The equation

C(∂)u(x) = P̃ (x), x ∈ R3\{0},

has a unique homogeneous solution u(0) ∈ [C∞(R3\{0})]3 of zero order satisfying the
following condition ∫

|x|=1

u(0)(x)dS = 0.

The solution is representable in the form

u(0)(x) := F−1
ξ→x

(
v.p. [C(−iξ)]−1F P̃ (ξ)

)
, (9)

where F and F−1 are generalized Fourier transform operators and v.p. denotes that
integrals are to be understood in the Cauchy principal sense.
Denote by ΓC = [ΓC, kj]3×3 the fundamental solution of the operator C(∂) [2], [5].

Lemma 3. Let Q̃ = (Q1, Q2, Q3)
⊤ ∈ [C0,α(Ω−)]3 ∩ [C∞(Ω−)]3 with

∂βQj(x) = O(|x|−3−|β|) as |x| → ∞, j = 1, 3,

for an arbitrary multi-index β = (β1, β2, β3), |β| = β1 + β2 + β3.
Then the vector

v(x) =

∫
Ω−

ΓC(x− y) Q̃(y) dy,

is a particular solution of the equation

C(∂)v(x) = Q̃(x), x ∈ Ω−.

Moreover, v ∈ [C∞(Ω−)]3 ∩ [C2(Ω−)]3 and

∂βv(x) = O(|x|−1−|β| ln |x| ) as |x| → ∞

for arbitrary multi-index β = (β1, β2, β3).

Corollary. Let P̃ and Q̃ be as above. Further, let u ∈ [C2(Ω−)]3 ∩ [C1(Ω−)]3 be a
solution of the equation

C(∂)u(x) = θ0 P̃ (x) + Q̃(x) + Φ̃(x), x ∈ Ω−

, satisfying the condition u(x) = O(1) as |x| → ∞.
Then U can be represented as

u(x) = C + θ0 u
(0)(x) + u(1)(x),
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where c = (c1, c2, c3)
⊤ is a constant vector, u(0) is given by (9) and

u(1) ∈ [C2(Ω−)]3 ∩ [C1(Ω−)]3

possesses the following asymptotic at infinity

∂βu(1)(x) = O(|x|−1−|β| ln |x| ) as |x| → ∞,

for an arbitrary multi-index β = (β1, β2, β3).
We can rewrite the equation (1) in the form

C(∂)u(x) = θ0P̃ (x) + Q̃(x) + Φ̃(x), x ∈ Ω−.

Therefore its solution is representable as

u(x) = c+ θ0u
(0)(x) + u(∗)(x), x ∈ Ω−,

where c = (c1, c2, c3)
⊤ is a constant vector, u(0) is defined by (9), while

u∗ ∈ [C2(Ω−)]3 ∩ [C1, α(Ω−)]3 ∩ [C∞(R3\ suppΦ)]3

and has the following asymptotic behaviour at infinity

∂ βu∗(x) = O(|x|−1−|β| ln(|x|)), |x| → ∞,

for arbitrary multi-index β = (β1, β2, β3).
Denote by Z(Ω−) the class of vector functions from the space [C1, α(Ω−)]3 satisfying

the following relations:

ϑ(x) = O(|x|−1), u(x) = O(1), lim
R→∞

1

4πR2

∫
Σ(0,R)

u(x) dΣ(0, R) = 0,

where Σ(0, R) is a sphere centered at the origin and radius R.
With the help of the above lemmata we can prove the following uniqueness result.
Theorem. The exterior Dirichlet problem has at most one solution in the space

[C2(Ω−)]3 ∩ [C1(Ω−)]3 ∩ Z(Ω−).
Similar uniqueness theorems hold true also for the exterior Neumann and mixed

type boundary value problems for the static equations of the theory of thermoelasticity
for anisotropic bodies.
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