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Abstract. In the paper we consider the basic interior and exterior boundary value problems

of the theory of thermoelasticty for hemitropic elastic solids. Applying the potential method

and the theory of integral equations we prove the uniqueness and existence theorems.
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We investigate the basic boundary value problems of thermostatics for hemitropic
elastic solids. Let Ω+ ⊂ R3 be a domain of finite diameter with the boundary ∂Ω+=
S ∈ C2,α, 0 < α ≤ 1; Ω+=Ω+ ∪ S and Ω− := R3 \ Ω+.

The linear equations of statics of the hemitropic elasticity with regard to thermal
effects read as [1], [2].

(µ+ α)∆u(x) + (λ+ µ− α) grad div u(x) + (χ+ ν)∆ω(x)+
(δ + χ− ν) grad divω(x) + 2α curlω(x)− η gradϑ(x) = −ρF (x),

(χ+ ν)∆u(x) + (δ + χ− ν) grad div u(x) + 2α curlu(x) + (γ + ε)∆ω(x)+
(β + γ − ε) grad divω(x) + 4ν curlω(x)− ζ gradϑ(x)− 4αω(x) = −ρG(x),

κ
′
∆ϑ(x) = −Q(x),

(1)

where u = (u1, u2, u3)
⊤ is the displacement vector, ω = (ω1, ω2, ω3)

⊤ is the micro-
rotation vector, ϑ is the temperature function, −ρF and −ρG are three dimensional
given mass force and mass momentum vectors, and −Q is a given heat source function;
α, β, γ, δ, λ, µ, ν, κ, ε, κ′

, η > 0 and ζ > 0 are the material parameters.
Denote by L(∂) the matrix differential operator generated by equations (1),

L(∂) =

 L(1)(∂) L(2)(∂) L(5)(∂)
L(3)(∂) L(4)(∂) L(6)(∂)
[0]1×3 [0]1×3 κ

′
∆


7×7

,

L(1)(∂) := (µ+ α)∆I3 + (λ+ µ− α)Q(∂),

L(2)(∂) = L(3)(∂) := (χ+ ν)∆I3 + (δ + χ− ν)Q(∂) + 2αR(∂),

L(4)(∂) := [(γ + ε)∆− 4α]I3 + (β + α− ε)Q(∂) + 4νR(∂),
L(5)(∂) := −η∇⊤, L(6)(∂) := −ζ∇⊤.
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Introduce also the so called generalized stress operators P (∂, n) and P ∗(∂, n) [2]:

P(∂, n) =

 T (1)(∂, n) T (2)(∂, n) −η n⊤

T (3)(∂, n) T (4)(∂, n) −ζ n⊤

[0]1×3 [0]1×3 κ ′ ∂n


7×7

,

P∗(∂, n) =

 T (1)(∂, n) T (2)(∂, n) −i σ η n⊤

T (3)(∂, n) T (4)(∂, n) −i σ ζ n⊤

[0]1×3 [0]1×3 κ ′ ∂n


7×7

,

where n = (n1, n2, n3) stands for the exterior unit normal vector to S,

T (j) =
[
T (j)
pq

]
3×3

, j = 1, 4,

T (1)
pq (∂, n) = (µ+ α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T (2)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q − 2α

3∑
k=1

εpqknk,

T (3)
pq (∂, n) = (κ + ν)δpq∂n + (κ − ν)nq∂p + δnp∂q,

T (4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2ν

3∑
k=1

εpqknk.

Then equations (1) can be rewritten as

L(∂)U(x) = Φ(x), x ∈ Ω±, (2)

where we assume that

U = (u, ω, ϑ)⊤ ∈ [C1,β(Ω±)]7 ∩ [C2(Ω±)]7, 0 < β < α ≤ 1,

Φ = (Φ1,Φ2, ...,Φ7)
⊤ ∈ [C0,β(Ω±)]7.

Further we introduce the single and double layer and Newtonian potentials

V (g)(x) :=
∫
S

Γ(x− y)g(y)dSy, x ∈ R3 \ S,

W (h)(x) :=
∫
S

[P ∗(∂y, n(y))Γ
⊤(x− y)]⊤h(y)dSy, x ∈ R3 \ S,

NΩ±(Ψ)(x) :=
∫
Ω±

Γ(x− y)Ψ(y)dy, x ∈ R3,

where Γ(x−y) = [Γkj(x−y)]7×7 is the matrix of fundamental solutions of the operator
L(∂) constructed in [2], g = (g1, g2, ..., g7)

⊤ and h = (h1, h2, ..., h7)
⊤ are density vectors

defined on S and Ψ = (Ψ1,Ψ2, ...,Ψ7)
⊤ is defined on Ω± respectively. We assume that

the vector-function Ψ has a compact support in the case of the domain Ω−.
We say that a vector function U = (u, ω, ϑ)⊤ belongs to the class Z(Ω−) if

u(x) = O(1), ω(x) = O(|x|−2), ϑ(x) = O(|x|−1),

lim
R→∞

1
4πR2

∫
∑

(0,R)

u(x)d
∑

(0, R) = 0, x ∈ Ω−,
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where Σ(0, R) is a sphere centered at the origin and radius R.
Lemma. The double and single layer potentials, V (g) and W (h) solve the homo-

geneous equation L(∂)U(x) = 0 in R3 \ S and belong to the class Z(Ω−) ∩ C1,β(Ω±) ∩
C∞(Ω±) for g ∈ [C0,β(S)]7 and h ∈ [C1,β(S)]7. Moreover, there hold the following
jump relations on S:

{V (g)(x)}± = V (g)(x) = Hg(x), {P (∂x, n(x))V (g)(x)}± = [∓2−1I7 +K]g(x),

{W (h)(x)}± = [±2−1I7 +N ]h(x),

{P (∂x, n(x))W (h)(x)}+ = P (∂x, n(x))W (h)(x)− =: Lh(x),

where x ∈ S and

Hg(x) :=
∫
S

Γ(x− y)g(y)dSy, Kg(x) :=
∫
S

[P (∂x, n(x))Γ(x− y)]g(y)dSy,

Nh(x) :=
∫
S

[P ∗(∂y, n(y))Γ
⊤(x− y)]⊤h(y)dSy,

Lh(x) := lim
Ω±∋z→x∈S

P (∂z, n(z)
∫
S

[P ∗(∂y, n(y))Γ
⊤(x− y)]⊤h(y)dSy.

Note that the Newtonian potential U (0)(x) = NΩ+(Φ)(x) is a particular solution of
the nonhomogeneous differential equation (2) and belongs to the space [C1,β(Ω±)]7 ∩
[C2(Ω±)]7∩Z(Ω−) for Φ ∈ [C0,β

comp(Ω
±)]7. Therefore we can formulate the basic BVPs for

the homogeneous differential equation. In particular, we can set the interior Dirichlet
problem (D)+ as follows: Find a solution U = (u, ω, ϑ)⊤ ∈ [C1,β(Ω+)]7 ∩ [C2(Ω+)]7

to the equation L(∂)U(x) = 0, x ∈ Ω+, which satisfies the boundary condition on S
{U(x)}+ = f(x), x ∈ S, where f = (f1, f2, ..., f7)

⊤ ∈ [C1,β(S)]7.
There hold the following existence results for the problem (D)+.
Theorem 1. Let S ∈ C2,α and f ∈ [C1,β(S)]7, 0 < β < α ≤ 1. Then the Dirichlet

problem (D)+ is uniquely solvable in the space [C1,β(Ω+)]7∩ [C2(Ω+)]7 and the solution
is representable in the form of a double layer potential U = W (g) where the density
vector g ∈ [C1,β(S)]7 is uniquely defined by the singular integral equation

2−1 g(x) +N g(x) = f(x), x ∈ S.

Theorem 2. Let S ∈ C2,α and f ∈ [C1,β(S)]7, 0 < β < α ≤ 1. Then the Dirichlet
problem (D)+ is uniquely solvable in the space [C1,β(Ω+)]7∩ [C2(Ω+)]7 and the solution
is representable in the form of a single layer potential U = V (g) where the density
vector g ∈ [C1,β(S)]7 is uniquely defined by the integral equation

Hg(x) = f(x), x ∈ S.

Now we formulate the exterior Dirichlet problem (D)−:
Find a solution U ∈ [C1,β(Ω−)]7 ∩ [C2(Ω−)]7 ∩ Z(Ω−), 0 < β < α ≤ 1, to the equation

L(∂)U(x) = 0, x ∈ Ω−, (3)

satisfying the boundary condition

{U(x)}− = f(x), x ∈ S,
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where f = (f1, f2, ..., f7)
⊤ ∈ [C1,β(S)]7.

We have the following existence results for the problem (D)−.
Theorem 3. Let S ∈ C2,α and f ∈ [C1,β(S)]7, 0 < β < α ≤ 1. Then the Dirichlet

problem (D)− is uniquely solvable in the space [C1,β(Ω−)]7 ∩ [C2(Ω−)]7 ∩ Z(Ω−) and
the solution is representable in the form of a linear combination of double and single
layer potentials U = W (g) + a V (g) with a positive constant a > 0, where the density
vector g ∈ [C1,β(S)]7 is uniquely defined by the singular integral equation

−2−1 g(x) +N g(x) + aHg(x) = f(x), x ∈ S.

Theorem 4. Let S ∈ C2,α and f ∈ [C1,β(S)]7, 0 < β < α ≤ 1. Then the Dirichlet
problem (D)− is uniquely solvable in the space [C1,β(Ω−)]7 ∩ [C2(Ω−)]7 ∩ Z(Ω−) and
the solution is representable in the form of a single layer potential U = V (g) where the
density vector g ∈ [C1,β(S)]7 is uniquely defined by the integral equation

Hg(x) = f(x), x ∈ S.

Further we formulate the exterior Neumann problem (N)−:
Find a solution U ∈ [C1,β(Ω−)]7 ∩ [C2(Ω−)]7 ∩ Z(Ω−), 0 < β < α ≤ 1, to equation (3)
satisfying the boundary condition

{P (∂, n)U(x)}− = F (x), x ∈ S,

where F = (F1, F2, ..., F7)
⊤ ∈ [C0,β(S)]7.

In this case we have the following existence result.
Theorem 5. Let S ∈ C1,α and F ∈ [C0,β(S)]7, 0 < β < α ≤ 1. Then the Neumann

problem (N)− is uniquely solvable in the space [C1,β(Ω−)]7 ∩ [C2(Ω−)]7 ∩ Z(Ω−) and
the solution is representable in the form of a single layer potentials U = V (g), where
the density vector g ∈ [C0,β(S)]7 is uniquely defined by the singular integral equation

2−1 g(x) +Kg(x) = F (x), x ∈ S.
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