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NUMERICAL RESOLUTION OF ONE NONLINEAR PARABOLIC SYSTEM

Gagoshidze M.

Abstract. Numerical resolution of one nonlinear system of parabolic equations is studied.

Considered model is the one-dimensional analog of Maxwell’s system which describes process

of penetration of magnetic field into a substance. Graphs of numerical experiments based on

constructed finite difference schemes are given.
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Let us consider following initial-boundary value problem for one-dimensional analog
of the system of Maxwell’s equations which describes process of penetration of the
magnetic field into a substance [1]:
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U(x, t) = V (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (3)

U(x, 0) = U0(x), V (x, 0) = V0(x) ≥ Const > 0, x ∈ Ω, (4)

where a, U0, V0 are known functions of their arguments; ε, T are the fixed positive
constants and Ω = (0, 1).

By the first term in the right hand side of the equation (2) Joule’s rule is considered
and by the second term in the same equation thermal conductivity is described.

The problem with taking into account only Joule’s rule (ε = 0) as well as system
with both physical terms (ε > 0) are considered by many authors (see, for example,
[2]-[8] and references therein).

Note that, system (1), (2) without thermal conductivity can be reduced to integro-
differential form [9]. Many works are devoted to the integro-differential models of these
type (see, for example, [10]-[20] and references therein). The questions of existence,
uniqueness, asymptotic behavior of the solutions and numerical resolution of some kind
of initial-boundary value problems for this type integro-differential models are studied
in these works.

The purpose of the present note is construction of the finite difference scheme for
(1)-(4) problem.

Let us introduce the uniform grids ωh = {ti = ih, i = 0, 1, ...,M} on [0, 1] and
ωτ = {tj = jτ, j = 0, 1, ..., N} on [0, T ].
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Using usual notations and technique of building of the finite difference schemes
(see, for example, [21]) let us construct following approximate models for the problem
(1)-(4).

1. Semi-implicit finite difference scheme. At first let us correspond to problem
(1)-(4) the following so called semi-implicit scheme:
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i = 1, 2...M − 1; j = 0, 1..., N − 1,

(6)

uj0 = ujM = vj0 = vjM = 0, j = 0, 1, ..., N, (7)

u0j = U0,i v0j = V0,i, i = 0, 1...,M. (8)
Using the tridiagonal matrix algorithm in the first step from (6)-(8) we find the

second component v of the approximate solution of the scheme (5)-(8). In the second
step by using once again the tridiagonal matrix algorithm from (5),(7),(8) we will find
u.

2. Implicit finite difference scheme. In this case in the scheme (5)-(8) instead
of equation (6) we have
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For the solving of (5), (7), (9) model Newton iterative algorithm is used [22].
Many numerical test experiments are carried out on the basis of these constructed

discrete analogues.
The numerical experiments are quite satisfactory and fully agree with the considered

exact test solutions of problem (1)-(4). One of these solutions have the form:

U(x, t) =
1

2
sin2(πx)(1 + t), V (x, t) =

1

4
sin2(πx)(1 + t2).

The graphs of suitable numerical results are given on the Figs. 1-3.
Let us note that numerical experiments give convergence of the considered schemes

when τ → 0, h→ 0. The convergence effect when ε→ 0 is also established by numerical
experiments. Particularly, the numerical experiments show us that the solutions of
problem (1)-(4) tend to the solution of same problem with ε = 0 when ε→ 0.

Test 1. Let us consider following nonlinearity a(V ) = (1 + V )1/2. In this test the
numerical computations are carried out by using semi-implicit scheme (5)-(8): Fig. 1.

Test 2. In this test we consider following nonlinearity a(V ) = 1
1+V 1/2 , and numerical

computations are carried out again by using semi-implicit scheme (5)-(8): Fig. 2.
Test 3. In this test we consider the same nonlinearity as in test 2, a(V ) = 1

1+V 1/2 ,
and numerical computations are carried out by implicit scheme using iterative method:
Fig. 3.

To solve system of (5), (7), (8), (9) equations we are computing solution of (7)-(9)
system and then we are computing solution of (5), (7), (8). We move up to new layer
when the difference between 2 consequent iteration is less then 0.0001.
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Fig. 1. Exact (solid line) and numerical (marked with ×) solutions and differences

between exact and numerical solutions (marked with •).

Fig. 2. Exact (solid line) and numerical (marked with ×) solutions and differences

between exact and numerical solutions (marked with •).

Fig. 3. Exact (solid line) and numerical (marked with ×) solutions and differences

between exact and numerical solutions (marked with •).
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