
Reports of Enlarged Session of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 24, 2010

INFERENCE MECHANISM OF PρLog

Dundua B.

Abstract. We describe the inference mechanism of the PρLog language: an extension of logic

programming with advanced rule-based programming features for hedge transformations,

strategies, and regular constraints.

Keywords and phrases: Rule based programming, logic programming, context sequence

matching, rewriting.

AMS subject classification: 68N17, 03B70, 68T15, 68Q42.

PρLog [1] (pronounced Pē-rō-log) is a Prolog implementation of the ρLog calculus
[2], which extends the host language with strategic conditional transformation rules.
These rules (basic strategies) define transformation steps on finite, possible empty, se-
quences consisting of terms or sequence variables. Such sequences are called hedges.
Strategy combinators help to combine strategies into more complex ones in a declara-
tively clear way. Transformations are nondeterministic and may yield several results,
which fits very well into the logic programming paradigm. Strategic rewriting separates
term traversal control from transformation rules. This allows the basic transformation
steps to be defined concisely. The separation of strategies and rules makes rules reusable
in different transformations.

PρLog uses four different kinds of variables in one framework: individual, sequence,
function, and context variables. It allows to traverse hedges in single/arbitrary width
(with individual and sequence variables) and terms in single/arbitrary depth (with
functional and context variables). These features facilitate flexibility in matching,
providing a possibility to extract an arbitrary subhedge from a hedge, or to extract
subterms at arbitrary depth.

More formally, terms and hedges in PρLog are built over unranked function symbols
and the already mentioned four kinds of variables. These sets are disjoint. Here we
follow the PρLog notation for this language, writing its constructs in typewriter font.
PρLog uses the following conventions for the variables names: Individual variables
start with i_ (like, e.g., i_Var for a named variable or i_ for the anonymous variable),
sequence variables start with s_, function variables start with f_, and context variables
start with c_. The function symbols, except the special constant hole, have flexible
arity. To denote function symbols, PρLog basically follows the Prolog conventions for
naming functors, operators, and numbers. Terms t and hedges h are formally defined
by the grammars:

t ::= i_X | f(h) | f_X(h) | c_X(t)

h ::= t | s_X | eps | (h_1, h_2)
where eps stands for the empty hedge and is omitted whenever it appears as a subhedge
of another hedge. a(eps) and f_X(eps) are often abbreviated as a and f_X. A Context

36 Dundua B.

is a term with a single occurrence of hole. A context C can be applied to a term
t, written C[t], replacing the hole in C by t. For instance, applying the context
f(hole,b) to g(a) gives f(g(a),b).

A substitution is a mapping from individual variables to hole-free terms, from se-
quence variables to hole-free hedges, from function variables to function variables and
symbols, and from context variables to contexts, such that all but finitely many indi-
vidual, sequence, and function variables are mapped to themselves, and all but finitely
many context variables are mapped to themselves applied to the hole. This mapping
can be extended to terms and hedges in the standard way. For instance, for a given
substitution σ ={c_Ctx7→f(hole), i_Term 7→g(s_X),f_Funct 7→g,s_Hedge17→eps,

s_Hedge2 7→(b,c)} and hedge h=(c_Ctx(i_Term),f_Funct(s_Hedge1,a,s_Hedge2)),
we have that σ(h) = (f(g(s_X)),g(a,b,c)).

Matching problems are pairs of hedges, one of which is ground (i.e., does not
contain variables). Such matching problems may have zero, one, or more (finitely
many) solutions, called matching substitutions or matchers. For instance, the hedge
(s_1,f(i_X),s_2) matches (f(a),f(b),c) in two different ways: one by the matcher
{s_1 7→(),i_X7→a,s_27→(f(b),c)} and other one by the matcher {s_1 7→f(a),i_X7→b,

s_2 7→c}. Similarly, the term c_X(f_Y(a)) matches the term f(a,g(a)) with the
matchers {c_X 7→f(hole,g(a)),f_Y7→f} and {c_X7→f(a,g(hole)),f_Y7→g}. An al-
gorithm to solve matching problems in the described language has been introduced in
[3].

Instantiations of sequence and context variables can be restricted by regular hedge
and regular context languages, respectively. These constraints are expressed as s_X in
RH and c_X in RC, where RH and RC are regular hedge and context expressions defined
by the grammars:

RH ::= eps | (RH RH) | RH|RH | RH∗ | f(RH) | RC(f(RH))
RC ::= hole | RC.RC | RC+ RC | RC⋆ | f(RH,RC,RH)

For RH, juxtaposition stands for concatenation, the vertical bar | for choice, and ∗ for
repetition. For RC, the dot is concatenation, + is choice, and ⋆ is repetition. These
expressions define the corresponding languages.

We add regular constraints to matching problems to restrict the set of computed
matchers. For instance, matching c_X(f_Y(a)) to f(a,g(a)) under the constraint
c_X in f(a,g(hole)⋆)1 gives one matcher {c_X 7→f(a,g(hole)),f_Y7→g} instead of
two for the unconstrained case mentioned earlier.

A ρLog atom (ρ-atom) is a quadruple consisting of a term st (a strategy), two hedges
h1 and h2, and a set of regular constraints R where each variable is constrained only
once, written as st :: h1 ==> h2 where R. Intuitively, it means that the strategy st

transforms h1 to h2 when the variables satisfy the constraint R. We call h1 the left hand
side and h2 the right hand side of this atom. When R is empty, we omit it and write
st :: h1 ==> h2. The negated atom is written as st :: h1 =\=> h2 where R. A
ρLog literal (ρ-literal) is a ρ-atom or its negation. A PρLog clause is either Prolog

1Here we use simplified notation for regular expressions. The complete form would be
f(a(eps),g(eps,hole,eps)⋆,eps). It should also be noted that PρLog uses a bit different, more
verbose syntax for regular operators, but we stick here to more conventional notation.

Inference Mechanism of PρLog 37

clause, or a clause of the form st :: h1 ==> h2 where R :- body (in the sequel
called a ρ-clause) where body is a (possibly empty) conjunction of ρ- and Prolog literals.

A PρLog program is a sequence of PρLog clauses and a query is a conjunction of ρ-
and Prolog literals. There is a restriction on variable occurrences imposed on clauses::
ρ-clauses and queries can contain only ρLog variables, and Prolog clauses and queries
can contain only Prolog variables. If a Prolog literal occurs in a ρ-clause or query, it
may contain only ρLog individual variables that internally get translated into Prolog
variables.

PρLog inference mechanism is based essentially on SLDNF-resolution [4] adapted
to ρ-clauses. In these rules below, P stands for a program and Q denotes a query. id
is the built-in strategy for identity. The rules have the form Q1 Q2, transforming
the query Q1 into a new query Q2.

R: Resolvent

st :: h1 ==> h2 where R ∧Q
σ(body ∧ (id :: h2’ ==> h2 where R) ∧Q)

where st is not id, there exists a clause st’ :: h1’ ==> h2’ where R’ :- body in
P such that under the constraint R’, the strategy st’ matches st and the hedge h1’

matches h1 by the substitution σ.

Id: Identity

id :: h1 ==> h2 where R ∧Q σ(Q)

if under the constraint R, the hedge h2 matches h1 by the substitution σ.

NF: Negation as Failure

(st :: h1 =\=> h2 where R) ∧Q Q

if there exists a finitely failed SLDNF-derivation tree for st :: h1 ==> h2 where R

with respect to P .

These rules can be applied in different (finitely many) ways to the same selected
query and the same program clause, because there can be more than one matcher σ.
But to guarantee that in derivations we face only matching problems and not unification
problems (i.e., that the hedge h1 in the rules above does not contain variables), we
need to impose well-modedness restrictions on ρ-clauses and queries. This is a quite
technical notion, whose definition can be found in [2] and which basically is based on
the same notion for normal logic programs [5]. Roughly, the idea of well-modedness it
to guarantee that whenever a ρ-atom is selected in the query, its left-hand side and the
strategy term (input positions) do not contain uninstantiated variables (for negative
ρ-atoms this restriction extends to the right-hand sides as well), This can be achieved
if the variables in the input positions of a ρ-atom in a query occur also in the output
positions (right-hand sides) of at least one of the ρ-literals located in the query to the
left of that ρ-atom.

Strategies control rule applications. They can be either user-defined or built-in,
ground or contain variables, can be atomic or compound. PρLog comes with some
predefined strategies, such as compose (sequential composition of its argument strate-
gies), choice (nondeterministic choice), map1 (maps its argument strategy to each

38 Dundua B.

single term of the input hedge), nf(st) (computes a normal form of the input hedge
with respect to st, if an application of st to a hedge fails, then nf(st) returns that
hedge itself), etc.

We give below an example that illustrates inference mechanism of PρLog.
The following PρLog program rewrites term with respect to strategy st (the first

clause implements rewriting a term by some rule i_Str and the second one gives one
specific rule).

rewrite(i_Str) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-

i_Str :: i_Redex ==> i_Contractum.

st :: f(s_X) ==> g(s_X).

The query rewrite(st) :: f(f(a),b) ==> i_X , by the rule R, using the first
clause and a substitution {i_Str →st, c_Context →hole, i_Redex→f(f(a),b)} ,
gives a new query:

st :: f(f(a),b) ==> i_Contractum, id :: i_Contractum ==> i_X.
From here, again by the rule R, using the second clause and a substitution

{S_X→(f(a),b)}, we obtain the query:
id :: g(f(a),b) ==> i_Contractum, id :: i_Contractum ==> i_X.

The first subgoal is succeeds, applying to it the rule Id and the substitution
{i_Contractum→g(f(a),b)}. The remaining query id :: g(f(a),b) ==> i_X can
be satisfied by the same rule, using the substitution {i_X→g(f(a),b)}. Hence, the
derivation is successful and PρLog returns the instantiation of the variables from the
original query i_X=g(f(a),b).

Meaning: The term f(f(a),b) can be rewritten by the rule st into g(f(a),b).
If one wants to compute more answers, backtracking is initiated, which forces the

query rewrite(st) :: f(f(a),b) ==> i_X to be resolved against the first clause by
the rule R and with a different substitution {i_Str→st, c_Context →f(hole,b),

i_Redex→f(a)} it gives a new query:
st :: f(a) ==> i_Contractum, id :: i_Contractum==> i_X.

and so on.
For a more detailed presentation of the features and applications of PρLog we refer

to [6,7].

Acknowledgments. This research has been funded by the Georgian National
Science Foundation (ref. YS09 2 1-120 and 09 184 1-120).

R E F E R E N C E S

1. Dundua B., Kutsia T. PρLog. http://www.risc.uni-linz.ac.at/people/tkutsia/software.html.
2. Marin M., Kutsia T. Foundations of the rule-based system rholog. J. Appl. Non-Classical

Logics, 16, 1-2 (2006), 151-168.
3. Kutsia T., Marin M. Matching with regular constraints. In Voronkov A., Sutcliffe G., editor,

International Conference on Logic for Programming Artificial Intelligence and Reasoning, volume 3835
of LNAI, Springer, (2005), 215-229.

4. Apt K., Bol R. Logic programming and negation: A survey. J. Log. Programm., 19 (1994),
9-71.

Inference Mechanism of PρLog 39

5. Deransart O., Maluszynski J. Relating logic programs and attribute grammars. J. Log. Pro-
gramm., 2, 2 (1985), 119–155.

6. Coelho J., Dundua B., Florido M., Kutsia T. A Rule-based Approach to xml Processing and
Web Reasoning. In P. Hitzler and T. Lukasiewicz, editors, RR, volume 6333 of Lecture Notes in
Computer Science, pages 164-172. Springer, 2010.

7. Dundua B., Kutsia T., Marin M. Strategies in PρLog. EPTCS, 15:32-43, 2010.

Received 3.08.2010; revised 13.10.2010; accepted 15.11.2010.

Author’s address:

Dundua B.
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia
E-mail: bdundua@gmail.com

