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ON ONE MIXED BOUNDARY VALUE PROBLEM FOR THE NON-SHALLOW
SPHERICAL SHELLS WHEN THE COMPONENTS OF AN EXTERNAL FORCE

ARE CONSTANTS

Chokoraia D., Gulua B.

Abstract. In the present paper the non-shallow spherical bodies of shell type are considered,

when the displacement vector is independent from the thickness coordinate x3 and an external

force Φ is equal to constant. The plane deformation analogous model for the spherical bodies

of shell type has been obtained. Mixed boundary value problem for the spherical segment

has been solved.
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Let us suppose that the displacement vector is independent from the thickness
coordinate x3

u(x1, x2, x3) = u(x1, x2).

It is known, that the equilibrium equations and stress-strain relations (Hook’s Law)
have the following complex form in the system of isometric coordinates [1]
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σi are contravariant stress vectors, Φ an external force, u the displacement vector, λ
and µ are Lame’s constants, ρ is a radius of sphere.

Let us consider the components of an external force F are equal to constants

F+ = P+ = const, F3 = P3 = const.

The solutions of the system (1), (2) have the following form [2]:
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where φ(z) and ψ(z) are holomorphic functions of z and χ(z, z̄) is a solution of the
equation ∇2χ+ 2
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χ = 0 [3], which is expressed with the help of holomorphic function

f(z) by formula
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Let us consider the mixed boundary value problem for the non-shallow spherical

shells. We have to find the elasticity balance, when the stresses are marked on the
some part of the boundary points and the displacements are on the remainder.

The boundary conditions for the components of the stresses and displacement vector
are expressed with the help of holomorphic functions φ(z), ψ(z), f(z) by formulas
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Let us the boundary conditions are equal to zero on the boundary points [4]
Tϑϑ + iTϑφ = 0, r = r0,

u(3) = 0, r = r0.
(3)
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If functions φ(z), ψ(z), f(z) are introduced by series
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then solutions of this system (3) have the following forms:
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