
Reports of Enlarged Session of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 24, 2010

TRANSLATE IMPERATIVE CODE INTO LISP CODE FOR THEIR
VERIFICATION

Archvadze N., Silagadze G., Pkhovelishvili M., Shetsiruli L.

Abstract. We briefly describe an approach to translation of imperative programs into func-

tional ones. In particular, we focus on mapping the loop operators of C to LISP recursive

functions. The translation is a step in the process of using functional program verification

techniques for imperative code.

Keywords and phrases: Verification, programming languages, programming paradigm,

functional programming.

AMS subject classification: 68Q60, 65G20, 68N15, 68N18.

1. Programming paradigm. Four major paradigms are determined within the
programming: imperative, functional, logical and object-oriented. Generally, concept
of ”Programming Paradigm is referred to be the set of attitudes, methods, strate-
gies, ideas and concepts, which determines the program writing style” [1]. The term
”paradigm” was firstly used by Thomas Kun in his book ”Structure of the Scientific
Revolutions” [2]. Th. Kun deems paradigm to be the applicable system of the scien-
tific visions, under the frames of which the research is being implemented. The term of
”programming paradigm” was initially mentioned by Robert W. Floyd, the laureate of
the Turing Prize in 1979. Floyd mentioned that the events similar to Kun paradigms
can be observed while the programming; however, these events distinguish from Kun
paradigms since they are not mutually exclusive [3].

The functional programming, being based on Lambda () computations, secures
the opportunity of the mathematical research, namely, we can formally confirm the
program features. Our aim is to translate the functional programming verification
opportunity to the imperative languages, having high practical importance, considering
that the formal confirmation for them is too sophisticated issue.

The idea of the paper is to translate imperative code into LISP code hoping that
the latter can be verified easier that the former one. Possibility of such an imperative-
to-functional code translation has been pointed our already in the 60’ies by McCarthy.
It has been exploited for verification purposes by various people [4,5].

2. Two forms of the recursive functions for verification. Two forms of the
recursive functions have been developed for the functional language Lisp, those being
applied for presentation of the recursive functions within the functions verification and
automated synthesis tasks. They have the following form at the Lisp :

< DE LIST1(a g f x)(COND((NULL x)a)
(T(APPLY* g(APPLY f(CAR X))
(LIST1 a g f (CDR x >
< DE LIST2(a g f x)(COND((NULL x)a)

14 Archvadze N., Silagadze G., Pkhovelishvili M., Shetsiruli L.

(T(LIST2(APPLY* g(APPLY f(CAR x))a)
g f(CDR x >
At [6,7] the Lisp programs transfer on these forms is presented. The correctness for

these forms is formally confirmed through application of the structural induction and
special methods.

3. Universal approach to verification. On approach to verification of imper-
ative programs suggests to translate them into functional ones and try to verify the
obtained functional code. Proponents of this approach claim that, in this way, one
can verify imperative programs by inductive methods that have been successfully ap-
plied to functional program verification. This method also helps to reduce the need of
generating loop invariants for imperative program [4,5].

Thus we are tasked to create the translator that will translate C program into the
List program form.

Initially, we would suggest that C program contains only arithmetical and logical ex-
pressions, operations +, −, ∧, ⋆, /, ++, −−, ==, >=, <=, assigning, intake-outtake
operators, functions, functions assigns and operators return, for, do, while, if.

As an example, we present the C cycle operators through the Lisp functions and
recursive functions.

4. Obtained results. We have developed programs to translate C code into Lisp.
They consist of a pre-processor, the actual translator, and some auxiliary functions.

The pre-processor takes a C code, separates lines in it by spaces and put the pro-
cesses C program between parentheses. The result, that we call an S-image, is then
passed to the translator, which identifies C constructions within it and translates them
into LISP expressions with the help of auxiliary functions. The obtained LISP code is
saved in a file. After translation is finished, code corresponding to the main () function
call is added to the LISP program and the file is closed. Now it can be loaded from a
LISP session by the standard load function.

For the example, we present the translation of C while cycle operator to the recursive
function. C while function translates C while cycle into recursive Gnnnn() function
the body of which is the optional operator. Whether the option is not met, the output
is done through nil; in contrary, (cond(t sequence is formed for the while internal
operators and in the end the recursion inference on the new function is being stipulated.
The function determination is laid within the first file, and the direction on this function
is inserted into the second file; hence, the scheme is as follows:

Upon determination of the functions, the access is being formed. Hence, the follow-
ing scheme is developed: operator on C while < condition >< body > is transferred
to Lisp:

while < option >< body >: transfers
(defunGnnnn(); function with unique name
(if(not < optiononLisp >; recursion completion by nil
(cond(t; the body is completed and the recursive direction is being implemented
< body on Lisp >
(Gnnnn))))); determination will be stipulated in the first file
(Gnnnn)

Translate Imperative Code into LISP Code for 15

Below you can find the c while supplementary functions program text:
(defun cwhile (opr ff); ff is the file name to be stipulatedou 0
(let ((fn(gensym))); fn unique name
(terpri ou 0)(princ”(defun”ou 0); (defun
(princ fn ou 0); Gnnnn recursive function
(princ”()(if (not” ou 0); ()and body beginning
(princ (pzap (cadr opr)) ou 0); while next option
(princ”) nil” ou 0) ;)− stipulation and recursion will be completed by nil
(terpri ou 0); while internal operator is being launched
(let ((opr 1 (cddr opr))); while internal operator
(princ”(cond(t ”ou 0)(terpri ou 0); (cond(t− blockahead(inou 0)
(if (atom (car opr 1)); simple operator or block?
(opdam opr 1 ou 0); operator processing(inou 0)
(bldam (car opr 1) ou 0)); processing of blocks(in ou 0)if)
(princ”(”ou 0) (princ fn ou 1); recursion direction on the body end Gnnnn
(princ”)))))” ou 0)t); t)cond) if) defun) stipulation
(terpri ou 1); from the new line
(princ”(” ou 1); direction on recursive function(
(princ fn ou 1)(princ”)”ou 1); Gnnnn) is stipulated inou 1
t)); t− result and let)
defun)
Upon completion of the translation, first of all ”load” < first file > function should

be implemented (the cycle-respective recursive functions are determined); after that,
the ”load” < second file > should be implemented (the actions indicated in C++
program should be executed).

The obtained Lisp program is q special case of one of the general forms given in
Section 2 above. Since these forms can be verified, one can obtain correctness of simple
C programs from there. Therefore, verification of imperative programs in special cases
can be through verification of functional programs.

R E F E R E N C E S

1. Floyd R.W. The paradigms of programming. Communications of ACM., 22 (1979), 455-460.
2. Kuhn T.S. The Structure of Scientific Revolutions. Univ. of Chicago Press, 1970.
3. Archvadze N., Pkhovelishvili M., Shetsiruli L . Problems of verification of functional programs.

Bull. Georgian Acad. Sci., 3, 3 (2009), 57-60. http://www.science.org.ge/moambe/3-3/Archvadze.pdf
4. Myreen M.O. Formal Verification of Machine-Code Programs. PhD Thesis. University of

Cambridge, 2008.
5. Giesl J., Kuehnemann A., Voigtlaeder J. De accumulation techniques for improving provability.

Journal of Logic and Algebraic Programming, 71, 2 (2007), 79-113.
6. Archvadze N., Pkhovelishvili M., Shetsiruli L., Nizharadze. A recursion forms and their veri-

fication by using the undictive methods. Comput. Computational Intelli. Proc. 3nd European Com-
put. Conference (ECC’09), Tbilisi, (2009), 357-361. http://www.wseas.org/conferences/2009/tbilisi/
Program.pdf

16 Archvadze N., Silagadze G., Pkhovelishvili M., Shetsiruli L.

7. Archvadze N., Pkhovelishvili M., Shetsiruli L., Nizharadze M. Program recursive forms and pro-
gramming automatization for functional languages. Wseas transactions on comput. 8, (2009). ISSN:
1109-2750. 1256-1265. http://www.wseas.us/e-library/transactions/computers/2009/29-531.pdf

Received 4.06.2010; revised 19.10.2010; accepted 21.11.2010.

Authors’ addresses:

N. Archvadze
Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia
E-mail: natarchvadze@yahoo.com

G. Silagadze
N. Muskhelishvili Computing Mathematic Institute
7, Akuri St., Tbilisi 0193
Georgia
E-mail: Givi.Silagadze@yahoo.com

M. Pkhovelishvili
N. Muskhelishvili Computing Mathematic Institute
7, Akuri St., Tbilisi 0193
Georgia
E-mail: merab5@list.ru

L. Shetsiruli
Shota Rustaveli State University
35, Ninoshvili St., Batumi 6010
Georgia
E-mail: lika77u@yahoo.com

