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ON ONE NONLINEAR INTEGRO-DIFFERENTIAL EQUATION
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Abstract. One nonlinear integro-differential equation is considered. Large time behavior of

solution as t → ∞ is studied. The finite difference scheme is investigated as well. Results of

the numerical experiments are given.
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In this note one nonlinear integro-differential equation is considered. This equation
is a one-dimensional and one-component analog of the model which is based on the
classical Maxwell system [1]. This system arises in the process of penetration of a
magnetic field into a substance. To the integro-differential form at first it was reduced
in the work [2].

Let us consider the following nonlinear integro-differential equation
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where a = a(S) ≥ a0 = Const > 0 is a given function of its argument.
Many scientific works are devoted to the investigation and numerical resolution of

(1) type models. The existence and uniqueness of the solution of the initial-boundary
value problems for (1) kind models in suitable classes have been proved in [2]-[9] and
in a number of other works as well. Asymptotic behavior of solutions as t → ∞ is
investigated in many works also (see, for example, [8],[10]-[12] and references there in).
Numerical resolution by finite difference schemes is given in the works [10],[11],[13]-[15].

The aim of this note is to study asymptotic behavior of solution and to construct
approximate solutions for the initial-boundary value problem of the equation (1) with
source term. The considered equation has the form
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where q ≥ 2.
In the domain [0, 1] × [0,∞) let us consider the following initial-boundary value

problem:
U(0, t) = U(1, t) = 0,

U(x, 0) = U0(x),
(3)
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where U0 = U0(x) is a given function.
It is not difficult to get the following statement.

Theorem 1. If a(S) ≥ a0 = Const > 0, q ≥ 2, U0 ∈ L2(0, 1) then problem (2),(3)
has not more than one solution and the following asymptotic property takes place

∥U(x, t)∥ ≤ Ce−a0t.

Here ∥·∥ is the usual norm of the space L2(0, 1).
Now let us construct the finite difference scheme for the problem (2),(3). At first

in the rectangle [0, 1] × [0, T ] let us introduce uniform grid with mesh points denoted
by (xi, tj) = (ih, jτ), where i = 0, 1, ...,M ; j = 0, 1, ..., N with h = 1/M , τ = T/N .
The initial line is denoted by j = 0. The discrete approximation at (xi, tj) is designed
by uji and the exact solution to the problem (2),(3) by U j

i .
Using usual notations and the methods of construction of difference schemes (see,

for example, [16]) let us construct following finite difference scheme for the problem
(2),(3):
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τ

−

{
a

(
τ

j+1∑
k=1

(
ukx̄,i
)2)

uj+1
x̄,i

}
x

+ |uj+1
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i = 0,

i = 1, 2, ...M − 1; j = 0, 1...N − 1,

(4)

uj0 = ujM = 0, j = 0, 1..., N, (5)

u0i = U0,i, i = 0, 1...,M. (6)

In [10] convergence of the scheme (4)-(6) without source term for the case a(S) =
1 + S is considered.

The following statement takes place.

Theorem 2. If a(S) = 1+S, q ≥ 2 and the initial-boundary value problem (2),(3)
has the sufficiently smooth solution U = U(x, t) then the finite difference scheme (4)-(6)
converges to the solution of problem (2),(3) and the following estimate is true∥∥uj − U j

∥∥ ≤ C(τ + h).

Here ∥·∥ is a discrete analog of the norm of the space L2(0, 1) and C is a positive
constant independent of τ and h.

Note that for solving the finite difference scheme (4)-(6) Newton’s iterative pro-
cess [17] is used and great number of numerical experiments are performed. These
experiments agree with theoretical investigations.

The test given on the figures below (see, Fig. 1) has the form U(x, t) = x(1 −
x) sin(x+ t).
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Fig. 1. The solutions at t = 0.5 and t=1. The exact solution is solid line and the numerical solution

is marked by *.
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