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STATIONARY LIQUID FLOWS BETWEEN TWO NONCOAXIAL
PERMEABLE/NONPERMEABLE CYLINDRICAL SURFACES

Tsitskishvili A., Tsitskishvili Z., Tsitskishvili R.

Abstract. The paper considers different stationary liquid flows between noncoaxial per-
meable/nonpermeable cylindrical surfaces which are free from external forces. Using the
well-known method [5], the mathematical apparatus for mapping two nonintersecting cir-
cumferences onto two concentric circumferences is constructed [5].
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The stationary liquid flows between two coaxial cylinders have been investigated by
many scientists [1]–[4]. As for stationary liquid flows between two noncoaxial perme-
able/nonpermeable cylinders, they are not investigated even in a simplest case when
one cylinder is in the other noncoaxial one. The aim of the present work is to construct
a mathematical apparatus for mapping two nonintersecting circumferences onto two
concentric ones [5]. In a general case the analytic functions have to be constructed
(Figs. 1,2,3) [5].

Let us first consider the mappings under which the both circumferences transform
into themselves. Such transformations are those under which the fixed points are the
nodes, while the trajectories are the given circumferences. At this step we can achieve
that any of two given circumferences of an orthogonal family pass into one another [5].

In a general case, to transform a pair of circumferences Kz,1 and Kz,2 on the plane
z into a pair of circumferences Kw,1 and Kw,2 on the plane w we can draw through
every of these pairs of circumferences an orthogonal circumference in such a way that
the latter ones pass into one another, and the points z1, z

′
1, z2, z

′
2 pass into the points

w1, w
′
1, w2, w

′
2 ([5]). Conversely, if these four points under the linear-fractional trans-

formation pass one into another, then the orthogonal circumferences and the pairs of
the given circumferences pass likewise one into another. For this to be the case, the
cross-ratios of this set of fours should coincide.

As is known [5], the linear-fractional functions w = [ax + b]/[cz + d], c 6= 0, for
which the determinant D = ad− bc is other than zero [5], map a sphere (an extended
complex plane) conformally and in a one-to-one manner onto itself and preserve circum-
ferences, i.e., transform straight lines and circumferences into straight lines and circum-
ferences. Mutually orthogonal circumferences are transformed again into orthogonal
circumferences. Substituting in this equation w = z = ζ and taking into account that
D = ad− bc = 1, we obtain cζ2− (a−d)ζ− b = 0, ζ1,2 = (a−d)±

√
(a + d)2 − 4)/[2c].

If a + d 6= 2, we obtain two different fixed points ζ1 and ζ2, and the equation w =
[ax + b]/[cz + d] is reduced to the form [w − ζ1]/[w − ζ2] = s[z − ζ1]/[z − ζ2] ([5]).
Thus we can find s: s = [cζ2 + d]/[cζ1 + d] = [cζ2 + d]2 = [a + d−

√
(a + d)2 − 4 ]2/4.
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Introducing the notation W = [w − ζ1]/[w − ζ2], Z = [z − ζ1]/[z − ζ2], we obtain
W = sZ.

Let us consider three cases. 1. s > 0. The trajectories are the circumferences
passing through ζ1 and ζ2 (hyperbolic transformations). If s > 1, then all points move
away from ζ1 and approach the point kζ2; if s < 0, everything is vice versa.

2. |s| = 1. The trajectories are orthogonal to the circumferences passing through
the points ζ1 and ζ2. The transformation is called elliptic. There remains the cross-ratio

[w1 − w3]/[w1 − w4] = [w2 − w3]/[w2 − w4]

= [z1 − z3]/[z1 − z4] : [z2 − z3]/[z2 − z4].

The mapping is hyperbolic if a + d is real and |a + d| > 2; it is elliptic, if a + d is real
and |a + d| < 2 ([5]).

Using the above-described construction, we find the angles ζ1 and ζ2 corresponding
to those circumferences. The transformation w = s[z−ζ1]/[z−ζ2] transforms the given
circumferences on the plane z into the concentric circumferences on the plane w. In the
capacity of s we can take any complex number; for example, it can be defined in such a
way that one of the concentric circumferences has the given radius and the given point
of one of the initial circumferences transfers to the given point of the corresponding
circumference. Interchanging the angles ζ1 and ζ2, the outer circumference on the plane
w becomes inner one, and vice versa.

First, we have to find a cross-ratio. Putting

∆(Kz,1, Kz,2) = [(z − z2)/(z
′
1 − z2)] : [(z − z′2)/(z

′
1 − z′2)],

we have
∆(Kz,1, Kz,2) = ∆(Kw,1, Kw,2).

Let Kz,1 and Kz,2 be the given circumferences, M1 and M2 be the centers, r1 and
r2 be the radii, d be the distance between M1 and M2. We draw through M1 and M2

the straight line and denote the points of its intersection with the circumferences by
z1, z

′
1, z2, z

′
2. Writing out by these points the value ∆(Kz,1, Kz,2), for the nonintersecting

circumferences (Fig. 1) [5] we obtain

∆(Kz,1, Kz,2) = [d2 − (r1 + r2)
2]/[d2 − (r1 − r2)

2]. (1)

If the circumferences lie one into another, then (Fig. 2)

∆(Kz,1, Kz,2) = [(z1 − r1)
2 − d2]/[(z2 + r1)

2 − d2]. (2)

If one of the circumferences, say Kz,2, degenerates into the straight line (Fig. 3),
then we simply have

∆(Kz,1, Kz,2) = [a− r1]/[a + r1], (3)

where a is the distance from M1 to the straight line Kz,2. Assume that the straight
line M1M2 is mapped onto the axis so that Kz,1 is mapped into the unit circumference,
and Kz,2 into the circumference |w| = R > 1. Let, moreover, the points z1, z

′
1, z2, z

′
2 be

mapped into the points w1 = 1, w′
1 = −1, w2 = R, w′

2 = −R (Fig. 4). Then

∆(Kw,1, Kw,2)[(R− 1)/(R + 1)]2.
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Since this expression upon the mapping remains unchanged, we have

R = [1 +
√

∆]/[1−
√

∆].

Note that we take the positive value of the root from the corresponding value of ∆:
(1), (2) or (3) ([5]).

According to [w − w1]/[w − w2]:

[w3 − w4]/[w3 − w2] = [z − z1]/[z − z2] : [z3 − z1]/[z3 − z2],

The unknown function can be written in the form

[[w − 1]/[w + 1]] · [R + 1]/[R− 1] = [[z − z1]/[z1 − z′1]] · [z2 − z′]/[z2 − z1].

Solving with respect to w, we obtain

w = [(∆1 + 1)z(z′1∆ + z1)]/[(∆− 1)z − (z′1 − z1)], ∆ =
z1 − z2

z′1 − z2

· 1√
∆

. (4)

For the cases (1), (2) and (3) we obtain

∆ =
√

[(d− z2)2 − r2
1]/[(d + r1)2 − z2

1 ],

∆=
√

[d2
2−(d + r1)2]/[r2

2−(d− r1)2], ∆=
√

[a−r1]/[a+r1],

respectively.
Equality (4) allows us to find the nodes of the elliptic net defined by the circum-

ferences Kz,1 and Kz,2. Since the points w = 0 and w = ∞ correspond to those nodes
[5],

ζ1 = [z′1∆ + z1]/[A + 1], ζ2 = [z′1∆− z1]/[A− 1].

To solve the problem we have to consider three cases of noncoaxisial cylinders (Figs.
1,2,3). Using the conformal mapping, we reduce the cases given in the Fig. 1,2,3 to
the case of stationary liquid motion between two concentric cylinders (see, [1], §15, p.
311-316). Let the liquid occupy the space between circular coaxial cylinders of radii r1

and r2 (see, [1], Fig. 114, §15) rotating round the general axis with constant angular
velocities ω1 and ω2. Define the liquid motion assuming that the motion is stationary
and the external forces are absent. The consideration of the viscous liquid motion in
the cylindrical system of coordinates under the condition vz = vr = 0, vϑ = v(r),
P = P (r) is facilitated considerably by solving the Novier-Stokes equation which is
reduced to the Euler type equation with respect to v

1

ρ

∂P

∂r
=

v2

r
,

d2v

dr1
+

1

r

dv

dr
− v

r2
= 0,

which is solved to the end [1].
The obtained results [1] can be generalized to the cases considered in [1]–[4].
Further we have to establish analytic connection between the figures presented in

[5] (Fig. 1–4, p. 85–86) and in [1] (Fig. 114, § 5, p. 344–346).
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Fig. 1 Fig. 2

Fig. 3 Fig. 4
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