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NUMBER OF COMPONENTS OF THE ZERO-SET OF QUATERNIONIC
POLYNOMIAL
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Abstract. The topological structure of the zero-sets of quaternionic polynomials is discussed.
It will be shown that their zero-sets consists of a finite number of points and two-dimensional
Euclidean spheres. The effective method of counting the components of both types is also
described.
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We deal with polynomials of one variable over the algebra of quaternions [1]

H =
{
q : q = a+bi+cj+dk, ∀ a, b, c, d ∈ R, i2 = j2 = k2 = −1, ij = −ji = k, . . .

}
.

We consider the so-called standard quaternionic polynomials

P (q) =
n∑

m=0

αm qm, where αi ∈ H and αn 6= 0. (∗)

It is obvious that the problems about roots of that polynomial are reduced to the
case of the so-called monic polynomial, i.e., to the case, where αn = 1. Throughout
this article, P will be assumed to be a monic polynomial. Properties of its roots will be
studied by the topological methods with the use of the theory of topological mapping
degree [2]. In the sequel we essentially use the following important fact.

Proposition 1. (cf. [3]) Every quaternion satisfies a quadratic equation with real
coefficients.

More precisely, it can directly be verified that a quaternion α = a + bi + cj + dk
satisfies the quadratic equation with real coefficients:

q2 − 2aq + a2 + b2 + c2 + d2 = q2 − 2Re(α)q + Nr(α) = 0.

The polynomial
Pξ = q2 − 2Re(α)q + Nr(α)

is called the characteristic polynomial of the quaternion α and is an irreducible quadratic
trinomial from the ring of polynomials R[x]. The converse statement is also valid: if
g(q) = q2 + 2tq + s is a quadratic trinomial with a negative discriminant, then any
quaternion β = a′ + b′i + c′j + d′k, for which a′ = Re(β) = −t, and Nr(β) = s, is a
root of the polynomial g.
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Lemma 1. For any quaternion polynomial P (q) with deg(P (q)) ≥ 2 and any
ξ ∈ H, there exist polynomials Q(q) and L(q) such that

P (q) = Q(q)Pξ + L(q),

and either deg(L(q)) ≤ 1, or L(q) ≡ 0. Polynomials Q(q) and L(q), satisfying that
equation, are defined uniquely.

Since coefficients of each characteristic polynomial are real, there is no need to prove
this lemma because its proof is identical to that of the theorem on the divisibility of
two polynomials with real coefficients (see [4]). We also need to introduce the notion
of conjugate polynomial for (*). Denote by P the polynomial of the type

P (q) =
n∑

m=0

αmqm,

i.e., the polynomial which is obtained from P by replacing the coefficients αi, i = 0, n,
by their conjugates αi.

Determine now an auxiliary polynomial with real coefficients which will allow us
to investigate the roots of a given polynomial. Namely, we put N(P ) = P · P , where
the polynomial N(P ) is obtained by multiplying P by P according to the rule that the
unknown q commutes with coefficients αi and αi, i = 0, n.

Definition 1. Polynomial N(P ) is called the quasi-norm of P .
Lemma 2. ([5]) The quasi-norm N(P ) of an arbitrary canonical polynomial P is

a polynomial with real coefficients of degree 2deg(P ).
Lemma 3. Let there be given the polynomial P and the quaternion ξ. Then we

have a dichotomy: either Pξ divides P and then the whole [ξ] consists of roots of P , or
there is no more than one root of P in [ξ], where Pξ is the characteristic polynomial of
the quaternion ξ, and [ξ] is the class of similar quaternions ξ.

Corollary. The set of roots of a polynomial P is infinite if and only if there exists
ξ ∈ H such that P is divisible by Pξ.

Lemma 4. ([5]) If ξ is a root of the polynomial P , then the characteristic polynomial
P (ξ) of the quaternion ξ divides N(P ).

Theorem 1. ([6]) The zero-set of a canonical quaternion polynomial

P (q) =
n∑

m=0

αmqm, αi ∈ H, i = 0, n, αn = 1,

consists of t isolated points and s ≤ n−t
2

two-dimensional spheres, i.e. the inequality
t + 2s ≤ n is valid.

We introduce now the notion of multiplicity of a component of the set of roots. For
a component consisting of one point one can apply the standard definition of pre-image
multiplicity under smooth mapping [7], [8]. For the sake of simplicity we will speak
about pre-images of zero only, i.e., about roots. Then, according to what has been said
above, we arrive at the following definition of multiplicity of an isolated quaternion
root.
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Definition 2. (cf. [9], [10]) Multiplicity of an isolated root of a quaternion polyno-
mial is defined as the dimension of the local algebra of the corresponding polynomial
endomorphism of H.

Definition 3. Algebraic multiplicity of an isolated root of the polynomial P is
defined as the exponent with which the characteristic polynomial of the given root is
involved in the factorization of the quasi-norm N(P ). Algebraic multiplicity of a two-
dimensional component of the zero-set is defined as the half of the exponent with which
the characteristic polynomial of the given component is involved in the factorization
of the quasi-norm N(P ).

For the sake of convenience, the number obtained in such a way will be called
the algebraic multiplicity of the component in question. Moreover, it turns out that
the geometric multiplicity of an isolated root can be easily expressed by its algebraic
multiplicity.

Proposition 2. ([5]) Geometric multiplicity of an isolated root of a canonical
quaternion polynomial is equal to the fourth degree of the algebraic multiplicity of that
root.

Theorem 2. ([5]) For any canonical quaternion polynomial P , the sum of algebraic
multiplicities of all components of its zero-set ZP is equal to the algebraic degree of P .

Here we describe the method which allows one to establish the existence of continual
components and to estimate their number, not evaluating roots and solutions of one
or another system of polynomial equations.

By the coefficient of the given canonical polynomial P we can construct algorith-
mically a pair of real polynomials of two variables N(x, y), T (x, y) [11], such that if
q0 is an arbitrary root of the equation P (q) = 0, then its trace and norm are the real
solutions of the system of equations {N(x, y) = 0, T (x, y) = 0}. In addition, it is
known that the given system has always a finite set of real solutions.

Thus to establish the existence of spherical components, it is sufficient to find
out whether the Niven’s system has multiple solutions. To this end, we denote by
J = J(N, T ) the Jacobian of that pair of polynomials and note that multiple solutions
are characterized by the fact that the Jacobians of the system vanish.

Proposition 3. If the extended Niven’s system {N = 0, T = 0, J = 0} has no real
solutions, then a set of roots of the given polynomial consists of isolated points.

Canonical polynomial P is representable in the norm

P (q) = Q(q) · Pξ(q) + Fp(t, n) · q + Gp(t, n),

where t and n are the coefficients of the characteristic polynomial Pξ, i.e., the trace
and norm of an arbitrary quaternion from the preassigned class of conjugacy, and Fp

and Cp are some quaternion-valued functions, depending on the above-introduced real
variables t and n.

Proposition 4. For a polynomial P , the function Fp and Cp are the polynomials of
the variables t and n, and as P varies, they are the polynomial functions of coefficients
of the polynomial P .

Theorem 3. The number s of roots of the system {Fp(t, n) = 0, Gp(t, n) = 0},
lying in the upper half-plane {n > 0}, can algorithmically be found by means of a finite
number of algebraic and logical operations over the coefficients of the given canonical
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polynomial P , and coincides with a number of spherical components of the set of roots
of the polynomial P .

Corollary. A number s, suggested by the theorem, is equal to zero, if and only if
the set of roots of the polynomial P does not contain spherical components.

Since a number s can easily be calculated, we can conclude that a number of spher-
ical components can also be calculated easily in every particular case. It should be
emphasized that the number determined in such a way coincides with that of geomet-
rically distinct spherical components of the set of roots.
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