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ON A VERSION OF NON-LOCAL BITSADZE-SAMARSKY PROBLEM FOR
LINEAR MIXED TYPE EQUATION
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Abstract. For second order mixed elliptic-hyperbolic type equation with strong parabolic
degeneracy the non-local boundary value problem is investigated.
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In the A. Bitsadze and A. Samarsky’s joint paper [1] the non-classical non-local
boundary value problem in rectangular domain D1{−` < x < `, 0 < y < 1} for the
Laplace equation is posed and investigated. According to this problem values of sought
solution in certain sets of internal and boundary points are connected.

In present paper the cognate non-local boundary value problem for second order
mixed type equation

uxx + y uyy + b uy = 0, b > 1, b 6= [b]. (1)

In rectangular domain D{0 < x < `, −q < y < p} with `, p, q > 0 given numbers is
considered. In sub-domains D− = D ∩ (y < 0) and D+ = D ∩ (y > 0) (1) belongs
to the classes of hyperbolic and elliptic equations correspondingly and is parabolically
degenerated on the interval 0 ≤ x ≤ `, y = 0. This interval of type-degeneracy is
the envelope of the both of families of characteristics and simultaneously itself is the
singular characteristic of given equation. In such case (1) have the strong characteristic
parabolic degeneracy and both of solution and it’s first order derivatives a priori can
be unbounded in the neighbourhood of the interval of degeneracy. The order of their
growth is defined by the lowest term of (1) and in general the solution of the first
boundary problem does not exist. For such cases A. Bitsadze did suggest some weighted
conditions for solution and its first order derivative in respect to the argument y along
the curve of degeneracy. Taking into account this factor below the following Bitsadze-
Samarsky type non-local problem is considered:

It is to find twice continuously differentiable in sub-domains D+, D− solution u(x, y)
of (1) subordinate to assembling relations

lim
y→0+

yb−1u+(x, y) = lim
y→0−

(−y)b−1u−(x, y), lim
y→0+

ybu+
y (x, y) = lim

y→0−
(−y)bu−y (x, y), (2)

and satisfying homogeneous boundary

u(x, y)
∣∣
x=0

= u(x, y)
∣∣
x=`

= 0 (3)

and non-local conditions

u+(x, p) + u−(x,−ρ) = ϕ(x), 0 ≤ x ≤ `, ϕ(0) = ϕ(`) = 0, (4)
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u+(x, r) + u−(x,−q) = f(x), 0 ≤ x ≤ `, f(0) = f(`) = 0. (5)

According to the boundary conditions (3) the following equalities ϕ(0) = ϕ(`) = 0
and f(0) = f(`) = 0 should be fulfilled. We demand from the functions Φ(x) and F (x)
which are obtained from ϕ(x) and f(x) by the oddness law on the segment [−`, 0]
and then by their prolongation on the whole axis with period 2`, to be two times
continuously differentiable. We also demand, the following ϕk(0) = ϕk(`), fk(0) =
fk(`) (k = 0, 2). Such periodical functions when they expansion into a Fourier series,
their coefficients tend to zero by order O(n−2) [3].

Taking into consideration the conditions (3) for the equation (1), the solution Dirich-
let problem is represented by the Fourier-Bessel series [6–7]:

u+(x, y) =
∞∑

n=0

(2
√

y)1−b

[
anI1−b

(2πn

`

√
y
)

+ bnIb−1

(2πn

`

√
y
)]

sin
πn

`
x, (6)

u−(x, y) =
∞∑

n=0

(2
√−y)1−b

[
knJb−1

(2πn

`

√−y
)

+ dnJb−1

(2πn

`

√−y
)]

sin
πn

`
x, (7)

where J1−b, Jb−1, I1−b, Ib−1 are Bassel functions and an, bn, dn, kn are the constants of
integrating. If we satisfy the conditions (2), (4), (5) of the problem by the series (6)
and (7), we shall obtain the linear inhomogeneous algebraic system relative to these
constants and for natural values n:

(
2πn

`

)1−b

Γ(2− b)
an −

(
2πn

`

)1−b

Γ(2− b)
kn = 0,

21−b
(

2πn
`

)−b

Γ(1− b)
an +

21−b
(

2πn
`

)−b

Γ(1− b)
kn = 0,

(2
√

p)1−b

[
anI1−b

(2πn

`

√
p
)

+ bnIb−1

(2πn

`

√
p
)]

+ (2
√

ρ)1−b

[
knJ1−b

(2πn

`

√
ρ
)

+ dnJb−1

(2πn

`

√
ρ
)]

= ϕn,

(2
√

r)1−b

[
anI1−b

(2πn

`

√
r
)

+ bnIb−1

(2πn

`

√
r
)]

+ (2
√

q)1−b

[
knJ1−b

(2πn

`

√
q
)

+ dnJb−1

(2πn

`

√
q
)]

= fn,

(8)

where ϕn, fn are the Fourier coefficients of the functions Φ, F and Γ is the Euler
function. From the system (8) it follows an = kn = 0, while for determining of constants
bn, dn the following conditions are to be fulfilled:

∆ = (4
√

pq)1−bIb−1

(2πn

`

√
p
)
Jb−1

(2πn

`

√
q
)

− (4
√

rρ)1−bIb−1

(2πn

`

√
r
)
Jb−1

(2πn

`

√
ρ
)
6= 0, (9)

bn =
∆b

∆
=

(2
√

q)1−bJb−1

(
2πn

`

√
q
) · ϕn − (2

√
ρ)1−bJb−1

(
2πn

`

√
ρ
) · fn

∆
,

dn =
∆d

∆
=

(2
√

p)1−bIb−1

(
2πn

`

√
p
) · fn − (2

√
r)1−bIb−1

(
2πn

`

√
r
) · ϕn

∆
.
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To the functions (6) and (7) we can give the following form:

u+(x, y) = (2
√

y)1−b

∞∑
n=0

bnIb−1

(2πn

`

√
y
)

sin
πn

`
x = (2

√
y)1−b

∞∑
n=0

∆b

∆n

α1 sin
πn

`
x,

(10)

u−(x, y) = (2
√−y)1−b

∞∑
n=0

dnJb−1

(2πn

`

√−y
)

sin
πn

`
x

= (2
√−y)1−b

∞∑
n=0

∆d

∆n

Jb−1

(2πn

`

√−y
)

sin
πn

`
x, (11)

where

∆n = (4
√

pq)1−bJb−1

(2πn

`

√
q
)
− (4

√
rρ)1−b · α2Jb−1

(2πn

`

√
ρ
)
,

α1 =
Ib−1

(
2πn

`

√
y
)

Ib−1

(
2πn

`

√
p
) , α2 =

Ib−1

(
2πn

`

√
r
)

Ib−1

(
2πn

`

√
p
) .

According to the properties of Bessel functions [4] 0 < αm < 1 (m = 1, 2).
In order to show the convergence of the functional series (10) we consider the

expression:

|∆n| =
∣∣∣∣(4
√

pq)1−b

∞∑

k=0

(−1)k

k! Γ(b− 1 + k + 1)

(πn

`

√
q
)b−1+2k

− (4
√

rρ)1−bα2

∞∑

k=0

(−1)k

k! Γ(b− 1 + k + 1)

(πn

`

√
ρ
)b−1+2k

∣∣∣∣

=

∣∣∣∣
(πn

`

)b−1
{

(4
√

pq)1−b(
√

q)b−1

[
1

Γ(b)
−

(
πn
`

√
q
)2

1! Γ(b + 1)
+ . . .

]

− α2(4
√

rρ)1−b(
√

ρ)b−1

[
1

Γ(b)
−

(
πn
`

√
ρ
)2

1! Γ(b + 1)
+ . . .

]}∣∣∣∣.

In the square brackets we have the series of Leibniz type [5]. Let us denote the first
remainders of these series by R1(q) and R2(ρ) the following inequality is known

|R1(q)| <
∣∣∣∣
(

πn
`

√
q
)2

Γ(b + 1)

∣∣∣∣, |R2(ρ)| <
∣∣∣∣
(

πn
`

√
ρ
)2

Γ(b + 1)

∣∣∣∣.

So we obtain

|∆n| ≥
∣∣∣∣
(πn

`

)b−1
{

(4
√

p)1−b

[
1

Γ(b)
−

(
πn
`

√
q
)2

1! Γ(b + 1)

]
− α2(4

√
r)1−b

[
1

Γ(b)
−

(
πn
`

√
ρ
)2

1! Γ(b + 1)

]}

≥ 41−b(πn)b+1

b Γ(b) `b+1

∣∣∣∣
∣∣∣q√p1−b − α2ρ

√
r
1−b

∣∣∣− 1

n2

∣∣∣b`
2(
√

p1−b − α2

√
r
1−b

)

π2

∣∣∣
∣∣∣∣



On a Version of non-Local Bitsadze-Samarsky .... 133

beginning at each n > N with some certain number N > 0 the inequality

∣∣∣q√p1−b − α2ρ
√

r
1−b

∣∣∣ ≥ 1

n2

∣∣∣b`
2(
√

p1−b − α2

√
r
1−b

)

π2

∣∣∣

have to satisfied. Therefore we obtain

∣∣∣q√p1−b − α2ρ
√

r
1−b

∣∣∣ ≥ |δn| ≥ 1

n2

∣∣∣(q√p1−b − α2ρ
√

r
1−b

)− b`2(
√

p1−b − α2

√
r
1−b

)

π2

∣∣∣,
n > N,

where

δn =
(
q
√

p1−b − α2ρ
√

r
1−b

)
− 1

n2

b`2(
√

p1−b − α2

√
r
1−b

)

π2
> 0, n > N,

δn is increasing convergent sequence. Let us denote inf δn = δ.
For the series (10) the following equality is fulfilled:

u+(x, y) = (2
√

y)1−b

∞∑
n=0

∆b

∆
Ib−1

(2πn

`

√
y
)
· sin πn

`
x

≤ 4b−1MbΓ(b)`b+1

δ

∞∑
n=0

|ϕn − fn|
nb+1

, (12)

where

M = sup

{
(2
√

q)1−bJb−1

(2πn

`

√
q
)
, (2
√

ρ)1−bJb−1

(2πn

`

√
ρ
)}

.

From the convergence of the majorant series (12) it follows that the series (10) are
uniformly and absolutely convergent and the function u+(x, y) is continuous.

For the derivative of the series (10) we have the following inequality

u+
y (x, y) =

∞∑
n=0

∆b

∆n

√
y−bIb

(
2πn

`

√
y
)

(2
√

p)1−bIb−1

(
2πn

`

√
p
) · πn

`
· sin πn

`
x

≤ 4b−1MbΓ(b)`b+1

δ

∞∑
n=0

ϕn − fn

nb+1
· πn

`
.

From the last inequality it follows, that the series u+
y (x, y) are uniformly and absolutely

convergent and the function u+
y (x, y) is continuous. Analogously, we prove that the

series u+
yy(x, y) are uniformly and absolutely convergent due to the smoothness of the

functions Φ(x) and F (x). Also, we can show, that series (10) differentiated with respect
to variable x, is also convergent.

Let us consider series (11) and show its convergence.

u−(x, y) =
(
2
√−y

)1−b
∞∑

n=0

Ib−1

(
2πn

`

√
p
)[

(2
√

p)1−bfn − (2
√

r)1−b · α2 · ϕn

]

∆
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· Jb−1

(2πn

`

√−y
)
· sin πn

`
x ≤ L

δ

∞∑
n=0

∣∣∣(2√p)1−bfn − (2
√

r)1−b · α2 · ϕn

∣∣∣,

where

L = sup
∣∣∣(2√−y)1−bJb−1

(2πn

`

√−y
)∣∣∣.

From the convergence of the last numerical series it follows that the series (11) are
uniformly and absolutely convergent and the function u−(x, y) is continuous. Analo-
gously it can be proved that first and second derivative of the series (11) with respect to
variables x and y are uniformly and absolutely convergent. Thus the following theorem
is true.

Theorem. If the condition (9) is fulfilled, then the non-local problem (1–5) has the
unique solution in the class of the functions, which are representable in the form of the
series (10) and (11).
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