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ON AN EXAMPLE FROM THE SPECTRAL REPRESENTATION THEORY OF
THE LINEAR MULTIGROUP TRANSPORT PROBLEM

Shulaia D.

Abstract. K. Case (1960) introduce a method for solving the neutron transport equation
with isotropic scattering. Kanal and Davies (1981) have applied Case’s method to the trans-
formation of the original equation of the linear transport theory by expanding the scattering
function for the problem to be solved as a spectral integral over the complete set Case’s eigen-
functions for a previosly solved transport problem. It was generalized by us these results to
the problems of the multigroup transport theory. In this paper the spectral representation
of the linear multigroup transport problem is applied to the additional example. We ob-
tain the dispersion relations and eigenfunctions for (N + 1)-th order scattering by using the
eigenfunctions for N -th order scattering as the basis.
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In the paper [1] is developed the mathematical reformulation of singular approach
to the solution of the one-dimensional equation of multigroup transport theory. A
number of simple examples were presented in which the spectral formulation leads
to the standard results of singular approach. In this paper we demonstrate that the
eigefunctions for N -th order scattering can be used as a basis set for obtaining the
dispersion relation, and eigenfunctions for (N + 1)-th order scattering.

The phase function for a previously solved transport problem is

f0(µ → µ′) =
N∑

s=0

(2s + 1)Ps(µ)fsPs(µ
′), (1)

with corresponding characteristic matrix equation

(νI − µ`)φν(µ) =
cν

2

∫ +1

−1

f0(µ
′ → µ)φν(µ

′)dµ′,

and known eigenfunctions φν(µ), eigenvalue spectrum S0[ν] and spectral density dρ(ν)
(see [1]). The phase function for the problem to be solved (N + 1)-th order scattering
is

f(µ → µ′) =
N+1∑
s=0

(2s + 1)Ps(µ)fsPs(µ
′), (2)

with corresponding characteristic matrix equation

(ωI − µ`)ψω(µ) =
cω

2

∫ +1

−1

f(µ′ → µ)ψω(µ′)dµ′, (3)
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and assumed unknown eigenfunctions ψω(µ), eigenvalue spectrum SN+1[ω]. Here ` =
diag {l1, ..., li0} , li > 0, moreover without loss of generality we can take max

i
li =

1, Ps(µ) = diag {ps(µ), ..., ps(µ)} , ps(µ) is the Legendre polynomial of order s, and
fs is i0 × i0 matrix, s = 1, ..., s0. For the sake of simplicity, we have chosen fs are
symmetric matrix.

Our basic integral equation (see [1]) is

(ω − ν)K(ν, ω) =
ωνc

2

∫

S0[ν′]
(A(ν, ν ′)− A0(ν, ν

′))dρ(ν ′)K(ν ′, ω), (4)

where
A(ν, ν ′)− A0(ν, ν

′)

=

∫ +1

−1

dµ

∫ +1

−1

dµ′φν(µ)(f(µ′ → µ)− f0(µ
′ → µ))φν′(µ

′).

Its solution is equivalent to the solution of equation (3). However, where equation
(3) is an integral equation involving an integration over the µ, equation (4) involves
the spectral integral over the known eigenvalues of a complete set of solutions to an
equation of transport.

Substituting the expressions (1) and (2) into equation (3), and applying some alge-
braic transformations we find that

(ω − ν)K(ν, ω) = (2N + 3)
cων

2
hT

N+1(ν)fN+1hN+1(ω), (5)

where superscript T means transpose and

hN+1(ν) =

∫ +1

−1

PN+1(µ)ϕν(µ)dµ.

The continuum of S0[ν] is known to be given by −1 ≤ ν ≤ 1. From equation(4) and
(5) we obtain the dispersion relation giving the discrete values of ω, which lie outside
of the continuum of S0[ν],

det
(
I − cω

2
(2N + 3)

(
L(ω, SN)hT

N+1(ω) +
hN+1(ω)

ω

)
fN+1g

0
N+1(ω)

)
= 0,

where

L(ω, SN) =

∫

SN [ν]

ν

ω − ν
h0(ν)dρ(ν)hT

0 (ν),

g0
N+1(ω) are defined by g0

0(ω) = I and the recursion relation

(s + 1)g0
s+1(ω) + sg0

s(ω) = (2s + 1)(I − cfs)ωg0
s(ω), s ≥ 0,

and

hs(ν) =

∫ +1

−1

Ps(µ)ϕν(µ)dµ.
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The eigenfunctions ψω(µ) for the unsolved problem follow from

ψω(µ) =

∫

S0[ν]

φν(µ)dρ(ν)K(ν, ω). (6)

To obtain ψωj
(µ) for discrete ωj, substitute the expression for K(ν, ωj) given by

equation (5) into equation (6). We obtain

ψωj
(µ) = (2N + 3)

cωj

2

∫

SN [ν]

φν(µ)dρ(ν)
ν

ω − ν
hT

N+1(ν)fN+1hN+1(ωj).

For all ω in the continuum of S[ν], −1 ≤ ν ≤ 1, we have

K(ν, ω)MT
N(ν, ω) = −(2N + 3)ωhN+1(ν)fN+1hN+1(ω)ϕT

ν (ω)

+NN(ω)Λ(ν, ω)MT
N+1(ω, ω),

where
Λ(ω, µ) = diag {δ(ω − µl1), ..., δ(ω − µli0)} ,

δ is the Dirac function, NN(ω) is the normalization coefficient and

MN(µ, ω) =
N∑

s=0

(2s + 1)Ps(µ)fshs(ω).

In finally we find for continuum ω the eigenfunctions ψω(µ) for the unsolved problem

ψω(µ) = −(2N + 3)ω

∫

SN [ν]

φν(µ)dρ(ν)hN+1(ν)fN+1hN+1(ω)ϕT
ν (ω)M−1

N (ω, ν)

+φω(µ)MN+1(ω, ω)M−1
N (ω, ω).
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