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THE EFFECT OF THE TEMPERATURE GRADIENT ON THE STABILITY OF
FLOW BETWEEN TWO PERMEABLE CYLINDERS

Shapakidze L.

Abstract. The linear stability of a viscous fluid flow between two rotating permeable cylin-
ders in the presence of a radial temperature gradient is investigated. The results of numerical
calculations for certain parameter values of the problem allow one to study the possible
existence of neutral axially symmetric stationary or oscillatory modes.
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1. Let a viscous heat-conducting liquid fill the cavity between two rotating per-
meable cylinders heated to different temperatures. We denote radii, angular velocities
and temperatures of the internal and outer cylinders by R1, Ω1, Θ1 and R2, Ω2, Θ2, re-
spectively. Assume that the external mass forces are absent, the velocity flow through
the cross-section of the cylinder cavity is equal to zero and the fluid inflow through one
cylinders is equal to the fluid outflow through the other.

We use the system of Navier-Stokes, continuity and heat-conductivity equations in
terms of the cylindrical coordinates r, ϕ, z with the axis z coinciding with the axis of
the cylinders[1],

~dv′

dt
= −1

ρ
∇ div Π′ + (∇~v′ − ν rot rot~v′),

∂T ′

∂t
+ (~v′,∇)T ′ = χ∆T ′,

∂ρ′

∂t
+ div(ρ′~v′) = 0, ρ′ = ρ0(1− βT ′), β = − 1

ρ′

( ∂ρ′

∂T ′

) (1.1)

with the boundary conditions

R1v
′
r|r=R1 = R2v

′
r|r=R2 = s, s = const,

v′ϕ|r=Ri
= ΩiRi, v′z|r=Ri

= 0, T ′|r=Ri
= Θi (i = 1, 2),

(1.2)

where ~v′ = {v′r, v′ϕ, v′z} is the velocity vector, T ′ is temperature, Π′ is pressure, ρ′ is
the liquid density, ρ0 is the liquid density for temperature Θ1, t is time, ν, χ, β are,
respectively, the coefficients of kinematic viscosity, thermal conductivity and thermal
extension.

The operators ∆ and ∇ in the cylindrical coordinates are of the form ∆ = ∂2

∂r2 +
1
r

∂
∂r

+ 1
r2

∂2

∂z2 , ∇ = { ∂
∂r

, 1
r

∂
∂ϕ

, ∂
∂z
}. As the scale of length, velocity, time, temperature and

density we take, respectively, R1, Ω1R1, 1/Ω1, Θ1 and ρ0.
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The problem (1.1)-(1.2) admits an exact solution [2]:

~V0 = {v0r, v0ϕ, 0} v0r =
κ0

r
, v0ϕ =





arκ+1 + b
r
, κ 6= 2,

a1 ln r+1
r

, κ = −2,

T0 = c1 + c2r
κP , Π0 =

∫ r

1

v2
0ϕ

r
[1− βΘ1c2(r

κPr − 1)]dr,

(1.3)

where

a =
ΩR2 − 1

Rκ+2 − 1
, b = 1− a; Ω =

Ω2

Ω1

, R =
R2

R1

, Θ =
Θ2

Θ1

,

a1 =
ΩR2 − 1

ln R
, c2 =

1−Θ

1−RκPr
; c1 = 1− c2, κ0 =

s

Ω1R2
1

,

P r = ν
χ

is the Prandtl’s number, κ = s
ν

- Reynold’s radial number (for κ > 0 the

liquid flows through the inner cylinder, while for κ < 0 through the outer one).
The solution (1.3) represents stationary flow of the heat-conducting liquid between

the rotating permeable cylinders in the presence of the radial temperature gradient in
the Boussinesq approximation ([1–3]). This flow is defined by means of the parameters

R, Ω, Θ, Pr and independent on the Reynold’s number Re =
Ω1R2

1

ν
. Many works of

theoretical and experimental character are devoted to the investigation of the influ-
ence of temperature gradient on the stability of flow between rigid rotating cylinders
(nonisothermal Couette flow). At present, the problem dealing with the first loss of
stability in that flow and with branching the secondary regimes can be considered as
completely studied (see [4]–[7]).

2. A solution of the problem (1.1), (1.2) is sought in the form

~v′ = ~V0 + ~v(vr, vϕ, vz), T ′ = T0 + c2PrT, Π′ = Π0 + Π/ Re . (2.1)

Substituting (2.1) into (1.1), (1.2), we arrive at the following problem of finding the
perturbations ~v, T and Π:
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∫ 2π

0

∫ R

1

vzrdrdϕ = 0, div ~V = 0.

(2.2)
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~v|r=1,R = 0, T |r=1,R = 0 (2.3)

where Ra = βc2Θ1Pr is the Rayleigh’s number, Re =
Ω1R2

1

ν
- Reynold’s number,

ω1 = v0ϕ
r

, ω2 = ω2
1r,

g1(r) =

{
−(κ + 2)arκ, κ 6= 2,

−a1

r2 , κ = −2,
g2(r) = κrκPr−1.

Assume that the perturbations of velocity ~v, temperature T and density are in-
finitesimal. In (2.2), we omit the nonlinear terms and obtain a linearized problem of
stability.

Finding a solution of the linearized problem in the form

~v(vr, vϕ, vz) = eict{u(r), v(r), w(r), τ(r)}e−i(mϕ+αz), Π = q(r)eictei(mϕ+αz),

after separation of variables we obtain the spectral problem for the system of ordinary
differential equations in the case of axisymmetric stationary (c = m = 0) and oscillatory
three-dimensional perturbations, where c is an the unknown cyclic frequency (phase
velocity of azimuthal waves), α,m– axial and azimuthal wave numbers, respectively.

These problems are reduced to the Cauchy problems for eight ordinary differential
equations of the first kind with real and complex coefficients. The use is made of the
shooting method together with the Newton’s method. For numerical integration of
the Cauchi problems we used the standard Runge-Kutta’s method. The numerical
minimization of Reynolds number Re was performed with respect to the wave numbers
m and α. As a result of our calculations, we obtained dependencies from the Reyleigh’s
number Ra, to critical values of Reynold’s number Re and frequency c (phase velocity
of azimuthal waves) which corresponds to bifurcations emerging under axisymmetric
flows (m = 0) and azimuthal waves (m 6= 0).

The calculations were performed for the case R = 2, Pr = 0.71 (working environ-
ment is air), for −10 < κ < 10 under the rotation of the inner cylinder (Ω = 0), as well
as under the rotation of cylinders in the same direction (Ω = 0.2). In Figs. 1 and 2 we
can see the dependence of the minimized critical Reynold’s number Re on the radial
Reynold’s number κ for different values Ra.

Fig. 1. Ω = 0 Fig. 2. Ω = 0.2

The segments of curves on which m remains constant, are denoted by 1, 2; they
correspond to axisymmetric stationary (m = 0) and oscillatory (m = 1) perturbations.
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As our calculations show, for Ω = 0 (Fig. 1) when Ra < 0 (temperature of the inner
cylinder exceeds that of the outer one) the first instability corresponds to axisymmetric
disturbances. Stabilization of the flow (1.3) is observed as the intensity of the outward
and inward radial flow increases. Note, that stabilizing effect is stronger for positive κ.
For Ra > 0 the stabilisation of flow is observed for κ < 0, while for κ > 0 and increasing
κ we obtain a destabilizing effect, moreover for κ = 7 there takes place transition from
the axisymmetric mode to non-axisymmetric oscillatory modes of period 2π in the
azimuthal direction.

When the cylinder rotate in one and the same direction (Fig.2) for Ra < 0 the
stabilization of the main flow (1.3) is observed too, while for Ra > 0 as κ increases,
we obtain a destabilizing effect, which increases together with the increase of κ and
moreover for Ra = 1, κ = 5 and Ra = 2, κ = 3.5 there arise autooscillations, periodic
in azimuthal direction with period 2π. As is seen from Fig.2, when Ra grows the critical
number Re decreases.

Thus unlike the flow without temperature gradient between two rotating permeable
cylinders [8] we obtain, that positive Raleigh number (temperature of the outer cylin-
ders exceeds that of the inner one) has a destabilizing effect, which increases together
with increase Rayleigh number Ra.
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