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A NUMERICAL SOLUTION OF STRING OSCILLATION EQUATION
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Abstract. We have drawn numerical algorithm for Kirchhoff’s integro- differential equation
that describes the string oscillation. The algorithm has been approved by tests and the results
of recounts are represented in the graphics.
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1. Statement of the problem. Let us consider the nonlinear equation

wtt(x, t)−

λ +

2

π

π∫

0

w2
x(x, t)dx


 wxx(x, t) + f(x, t) = 0, (1)

0 < x < L, 0 < t ≤ T,

with the initial boundary conditions

w(x, 0) = w0(x), wt(x, 0) = w1(x), (2)

w(0, t) = w(π, t) = 0, (3)

0 ≤ x ≤ π, 0 ≤ t ≤ T,

where λ > 0, T are given constants and f(x, t), w0(x), w1(x) are the given functions.
The equation (1.1) was suggested by Kirchhoff [1] in 1876 as the more precise

model of the string’s oscillation as compared with D’Alembert’s equation wtt = c2wxx.
Many authors have investigated this equation in case when f(x, t) = 0 and its natural
generalizations mainly from the point of view of the possibility of solving the equation
(1.1). See, for example works by A. Arosio, S. Bernstein, P. D’Ancona, R. Narasimha,
K. Nishihara, S. Panizzi, S.I. Pohozaev, S. Spagnolo. Several works have been done
in the field of studying the approximate methods for solving the equation (1.1). See,
for example works by F. Attugui, I. Christie, R.W. Dickey, I.S. Liu, J. Peradze, M.A.
Rincon, J.M. Sanz-Serna. Here we are considering one of the numeral algorithm [2] of
the approximate solution of the equation (1.1) and present the results of counting.

2. The Algorithm. The algorithm consists of three parts.
The first part - the Galerkin method. An approximate solution of problem (1.1) -

(1.3) is written in the form

wn(x, t) =
n∑

i=1

wni(t) sin ix, (1)
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where the coefficients wni(t) are defined by the Galerkin method from the system of
nonlinear differential equations

w
′′
ni(t) +

(
λ +

n∑
j=1

j2w2
nj(t)

)
i2wni(t) + fi(t) = 0, (2)

0 < t ≤ T,

with the conditions

wni(0) = a0
i , w

′
ni(0) = a1

i , i = 1, 2, . . . , n, (3)

where

fi(t) =
2

π

π∫

0

f(x, t) sin ixdx, a
(p)
i =

2

π

π∫

0

wp(x) sin ixdx, p = 0, 1.

We introduce the functions

uni(t) = w
′
ni(t), vni(t) = iwni(t), i = 1, 2, . . . , n, (4)

and replace system (2.2), (2.3) by an equivalent system of the first order

u
′
ni(t) +

(
λ +

n∑
j=1

v2
nj(t)

)
ivni(t) + fi(t) = 0, (5)

v
′
ni(t) = iuni(t), 0 < t < T, (6)

uni(0) = a1
i , vni(0) = ia0

i , i = 1, 2, . . . , n. (7)

The second part - the Crank-Nicolson type difference scheme. We proceed to solve
problem (2.5)-(2.7) by means of the difference method. On the time interval [0, T ] let
us introduce the grid {tm|0 = t0 < t1 < · · · < tm = T} with a generally variable step
τm = tm − tm−1,m = 1, 2, . . . ,M . Let us use notation fm

i = fi(tm). Approximate
values of uni(t) and vni(t) on the m-th time layer, i.e. for t = tm, m = 0, 1, . . . , M,
denoted by um

ni and vm
ni are defined by the implicit symmetric scheme

um
ni − um−1

ni

τm

+

{
λ +

1

2

[
n∑

j=1

((vm
nj)

2 + (vm−1
nj )2)

]}
vm

ni + vm−1
ni

2
+ fm

i = 0 (8)

vm
ni − vm−1

ni

τm

= i
um

ni + um−1
ni

2
, m = 1, 2, · · · ,M, i = 1, 2, · · · , n, (9)

u0
ni = a1

1, u0
ni = ia0

i . (10)

The third part - the Picard type iteration process. To solve the system of nonlinear
equations (2.8)-(2.10) we assumed that the counting is performed layer wise by itera-
tion. After getting a solution on the (m − 1)-th layer, we process to the m-th layer.
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Denote by um, k
ni and vm, k

ni the k-th iteration approximation of um
ni and vm

ni, k = 0, 1, . . . .
Let us use the following iteration method

um, k
ni = um−1, k0

ni − τmi

2

{
λ +

1

2

[
n∑

j=1

((vm, k−1
nj )2 + (vm−1, ko

nj )2)

]}
×

×(vm, k−1
nj + vm−1, k0

nj )− τmfm
i , (11)

vm, k
ni = vm−1, k0

ni +
τmi

2
(um, k−1

ni + um−1, k0

ni ), (12)

k0 is the amount of carry out iteration in m− 1 level.
We calculate the components um,k

ni and vm,k
ni , by formulas (2.11), (2.12). Then, for

chosen n and for t = tm, the series

n∑
i=1

wm, k
ni sin ix, (13)

where wm,k
ni = 1

i
vm,k

ni , gives at the k-th iteration step, an approximate value of the exact
solution w(x, tm) of the problem (1.1)-(1.3).

3. Algorithms Realization. The algorithm proposed in subsection 2 enables
us to find approximate solutions of problem (1.1)-(1.3). The approximate program
has been designed in Turbo Pascal algorithm language and calculations have been
done on the computer. The results obtained are good enough. The algorithm has
been approved by tests and the results of recounts are represented in the graphics. A
problem (1.1)-(1.3) with the following data is discussed:

f(x, t) = −6t sin 2x + (λ + 1 + 4t6)(sin x + 4t3 sin 2x),

w0(x) = sin x, w1(x) = 0, λ = 0.4, T = 1.

Corresponding exact solution is w(x, t) = sin x + t3 sin 2x.
Calculations have been done for n = 5,M = 20, τ = 0.05.
The amount of iteration on every time level k0 = 20.
Figure 1 corresponds to the exact solution and Figure 2 - to the solution according

to (2.13) formula.

Fig.1. Fig.2.
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The comparison of the graphics shows that the approximate solution only slightly
differs from the exact solution.
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