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VARIATIONAL FORMULATION OF ONE NONLOCAL BOUNDARY PROBLEM

Jangveladze T., Lobjanidze G.

Abstract. One nonlocal problem for second order ordinary differential equation with inte-
gral type nonlocal boundary condition is considered. Variational formulation by using inner
product constructed by symmetric continuation of a function is studied.

Keywords and phrases: Second order ordinary differential equation, nonlocal boundary
value problem, variational formulation, symmetric continuation of a function.

AMS subject classification: 34B05.

Following nonlocal boundary value problem is considered: Let us find a function
u(x) ∈ C(2) ]−a, 0[∩C[−a, 0] for which the second order ordinary differential equation
with integral type nonlocal boundary condition are satisfied:

−(k(x)u′(x))′ + q(x)u(x) = f(x), x ∈]− a, 0[, (1)

u(−a) = 0, (2)

0∫

−ξ

k(x)u′(x)dx = 0, (3)

where ξ ∈]0, a[ is a fixed point, f(x) ∈ C [−a, 0], q(x) ∈ C[−a, 0], k(x) ∈ C(1)[−a, 0],
k(x) ≥ k0 > 0, q(x) ≥ 0 for x ∈ [−a, −ξ] and q(x) ≡ 0 for x ∈ [−ξ, 0].

Note, that when the function k(x) is constant, expression (3) presents Bitsadze-
Samarskii nonlocal boundary condition [1].

Many scientific works are devoted to the investigation of nonlocal problems (see,
for example, [1]-[12]).

It is known how great role takes place variational formulation for investigation of
boundary problems. In nonlocal boundary value problems this task is in the beginning
of study (see, for example, [13]-[18]).

The aim of the present note is to state and study variational formulation of problem
(1)-(3).

We denote by D[−a, 0] a lineal of all real functions such that each of its functions
v(x) be defined a.e. on [−a, 0], |v(0)| < +∞ and v(x) ∈ L2[−a, 0].

Note that, to give a function u(x) ∈ D [−a, 0], one should essentially specify the
pair (v(x), v(0)) (x ∈ [−a, 0[). Functions v1(x) and v2(x) are the same elements of the
lineal D[−a, 0] if v1(x) = v2(x) a.e. on [−a, 0[ and v1(0) = v2(0).

On the lineal D[−a, 0] we define operator τ of symmetric continuation as follows:

τv(x) =

{
v(x), for x ∈ [−a, 0],
−v(−x) + 2v(0), for x ∈ ]0, ξ].
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Function ṽ(x) = τv(x) defined a.e. on the [−a, ξ] is corresponded to each function
v(x) and function ṽ(x)− v(0) is odd a.e. on the [−ξ, ξ].

Let us define following inner product on lineal D[−a, 0]

[u, v] =

ξ∫

−ξ

x∫

−a

ũ(s)ṽ(s)dsdx. (4)

By the inner product (4) the lineal D[−a, 0] becomes pre-Hilbert space which we
denote via H[−a, 0]. For the norm produced by inner product (4) we use the notation

||v||H =




ξ∫

−ξ

x∫

−a

ṽ2(s)dsdx




1/2

.

Theorem 1. The norm defined on the lineal D[−a, 0] by the equality

||v|| = (||v||2L2
+ v2(0)

)1/2
,

is equivalent to the norm || · ||H , where ||v||2L2
=

0∫
−a

v2(x)dx.

Let DA[−a, 0] lineal of the functions of the space H[−a, 0] be a domain of definition
of the operator Au = −(ku′)′ + qu. For each function v(x) of the lineal DA[−a, 0] the
following conditions are fulfilled:

v(x) ∈ C(2)[−a, 0], v(−a) = 0, v′(0) = 0, v′′(0) = 0,

0∫

−ξ

k(x)u′(x)dx = 0.

Theorem 2. The lineal DA[−a, 0] is dense in H[−a, 0].
Thus, an operator A acts from the lineal DA[−a, 0] into the H[−a, 0].
Theorem 3. The operator A is symmetric on the lineal DA[−a, 0].
Theorem 4. The operator A is positively defined on the DA[−a, 0].
Thus, A is an operator defined positively on the dense lineal DA[−a, 0] in the

Hilbert space H[−a, 0]. Follow the standard way [19]. Onto the lineal DA[−a, 0], let
us introduce a new inner product

[u, v]A = [Au, v] =

ξ∫

−ξ

x∫

−a

(
k(s)ũ′(s)ṽ′(s) + q̃(s)ũ(s)ṽ(s)

)
dsdx. (5)

By inner product (5) the lineal DA[−a, 0] is transformed into the pre-Hilbert space.
Denote it via SA[−a, 0]. Complete this space with the norm correspondent to the (5)
inner product. This norm, as is easy to show, is equivalent to the norm defined by the
equality

|||u|||2 = ||u||2W 1
2

+ u2(0), (6)
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where ‖ · ‖W 1
2

is the norm of the usual Sobolev space W 1
2 .

Denote with HA[−a, 0] a Hilbert space obtained as a result of completing with
respect to norm (6). The space consists in those functions of W 1

2 [−a, 0], which satisfy
the conditions (2) and (3).

Let α ∈ R. Consider a pair (f(x), α). It defines the unique function fα(x) of the
space H[−a, 0]. For each such function a functional

Fα(v) = [v, v]A − 2[fα, v] (7)

has unique minimizing function uα(x) ∈ HA[−a, 0] which satisfies the relation

[uα, v]A = [fα, v]

for all v(x) ∈ HA[−a, 0].
As is easy to see,

uα(x) = u0(x) + αω(x),

where ω(x) is a minimizing function of the functional (7) in that case when the first
term of the pair (f(x), α) is identical to zero function on the [−a, 0[, and α = 1.

Theorem 5. Let u(x) be a solution of problem (1)-(3). Then it is a minimizing
function of the functional F0(v) in the space H[−a, 0].
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