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A NON-LOCAL BOUNDARY PROBLEM FOR EQUATION Aky = 0
(k < 3) IN THE SPACE O (Q)

Kapanadze J.

Abstract. Non-local boundary problems for equations A%y = 0 and A%v = 0 in the space
CP)(Q) k < 3 are considered, Q is simply connected bounded domain from the class
CCEY) 0 < o < 1; S - closed surface from C(?%®) S € Q; ¢ = z(z) - C***)_diffeomorphism
from Of2 into S.

Keywords and phrases: Non-local problem, potential, density, Fredholm equation.

AMS subject classification (2000): 31B05; 35A08.

Let us consider the non-local boundary problem for the equation A%v =0 in the
space C4*)(Q). Let us find the solution to the equation A%y = 0 satisfying the bound-
ary values

(2) —v(z(2)) = f(z), €09, feC®),

d , (1)
gfjx) =g(z), €09, geC® O<a<d <1,

where v, is the unit vector of the outer normal to €2 at the point x.

Non-local boundary problems are considered in [1-3].

For smooth domains the non-local boundary problem in R? for the Laplace equation
is stated as follows: let 2 be a simply connected bounded domain from the class C'*®),
0 < a <1, S be a closed surface from C?*) S c Q. Let further ¢ = z(x) be a C?*-
diffeomorphism [4] from 0 into S. Assume that the boundary function f € C(99).

We will find a function ¢ € C(9f2) for which the following boundary condition is
satisfied

4

p(x) = Ko(z) = f(z), e i,

where
Kola) = olet@)) = = [ FEDL ppypas,

o0
Here G is the Green function of the Dirichlet problem for the domain €2, v, is the outer
normal, x € 0f2.
The non-local boundary problem in the disc is studied in the monograph [5, p. 312].
Let us introduce necessary definitions.
The Newton volume potentials and simple-layer potentials are defined as follows:
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where g € C(Q), ¥ € C(09), I'(x,y) = |x — y|~". Let us note that
G(z,y) = T(z,y) = U*(y),
where ¢/, is the density of balayage [6] for the unit Dirac measure 6,, x € Q,
D(z,y) =U%(y), y€ R*—Q, &, €C(09).
Let us define the balayage operator [6]
P =150 == [ D oo, fec@),
Q

Define the space

B = {f  f et / f(@)y(@)ds, = o}, (@) =1, 2 €0, € 0B,
o0

It is assumed that Q € C¢) S € 00 ¢ = 2(z) € C©*),
Theorem 1. The solution to problem (1) exists if and only if f € v+, where

Ul(z) = /dﬂlfb' —y| 7 y(y)dS, =1, 2 € Q, v € CBY ~L is the annihilator, f € C*),

Proof of sufficiency. We seek the solution in the space C*(Q). Obviously the
solution v admits the representation

ola) = Holw) ~ [ Gla.)Hi)dy @)

where Hy, H; are harmonic functions for which Hy(z)=v(z), Hi(z)=Av(z), z € 0.
Ho(z)=v(z)= ¢(x), v € 00 (v(z)=¢(x), v € 092). Due to boundary conditions (2)
gives
ov(z) _ OHy(7) OHy(x)
ov, 9(x) = v, v

Hy(z) — Ho(2(2)) = f(x) — /G(Z(:v%y)Hl(y)d% Hi(y) =T "g(y)

+ Hy(x), Hi(r) =g(x) , Hi(z) =T Hj,

Q

—7! (8HO> (v), ¢(x) = Kp(x) = fi(z), filz) = f(z) =T "g(y),

ov,
Kip(o) = Hule(0) + [ G007 (50 ) )y (Holon = vlon = ).

It is not hard to show that the operator Ap = ¢ — K¢ maps B, into B,. Besides
the homogeneous equation ¢ — K¢ = 0 in By has the trivial solution only. Thus, in
the space Bs there exists a continous inverse operator A~1.

The proof of necessity follows from the previous argument.

Now we pose the non-local problem for A3y = 0. Let us find the solution v belonging
to the space C®)(Q) satisfying the following boundary conditions:

v(z) —v(z(x) = flz) e COY) D<a<d <1,
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Ov(x)

0= gi(x) € CO), Qe 0B g e®al) (3)
82 / !
av,,(f) = go(x) € O, ¢ = 2(x) € CG.

The solution v € ¢ (Q) admits the

v( /GmyHl dy—l—/ xy/Gy, VHs(2)dzdy.
Q ) )

Therefore due to the boundary conditions we come to the second kind Fredholm equa-
tion

o —Kp=fi (v|oa = Holaa = ¢),
where f; depends on f, g1, gs, and K(p depends on Hy, H; and H,. Besides, H; and
Hy are defined through ¢, g1, g, %1;107 8a£° In particular, to find Hy we use the first
boundary condition

ov o o 8H0
dv, = v,

—m—T@ﬁ(@b /nyﬂﬂm@

Thus,

8H0 ([L’)
2 Hi(2) = () ()

To define the boundary value H; one has to consider the second derivative with respect

to v, of the expression [7, p. 115]

TVg"(z) = Ua() =

v(z /G:z:y y)dy Floq = Hi,
1 PHo(z) 02U (x)  9PUY(x
Hl(x) - E [QQ(x) - 352( ) - 81/2( ) + 61/2( ) )
OHy(x
¥ (@) = TF(@) = gy () — 20,

Due to (4) Hy (AH; = 0) is defined by
/Véb(q:)dm _ / \I/z($)d5x, ye R —Q.

|z —y| |z —y

Thus, the following assertion holds.
Theorem 2. The solution to problem (3) exists if and only if f € Bs, where

{f fec®) /f 2)dS, _o} Ul(z)=1, z€Q, yeC®»9(9Q).
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