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A NON-LOCAL BOUNDARY PROBLEM FOR EQUATION ∆kv = 0
(k ≤ 3) IN THE SPACE C(2k,α)(Ω)

Kapanadze J.

Abstract. Non-local boundary problems for equations ∆2v = 0 and ∆3v = 0 in the space
C(2k,α)(Ω) k ≤ 3 are considered, Ω is simply connected bounded domain from the class
C(2k,α), 0 < α ≤ 1; S - closed surface from C(2k,α), S ⊂ Ω; ζ = z(x) - C(2k,α)-diffeomorphism
from ∂Ω into S.
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Let us consider the non-local boundary problem for the equation ∆2v = 0 in the
space C(4,α)(Ω). Let us find the solution to the equation ∆2v = 0 satisfying the bound-
ary values

v(x)− v(z(x)) = f(x), x ∈ ∂Ω, f ∈ C(4,α′),

∂v(x)

∂νx

= g(x), x ∈ ∂Ω, g ∈ C(3,α′), 0 < α < α′ < 1,
(1)

where νx is the unit vector of the outer normal to ∂Ω at the point x.
Non-local boundary problems are considered in [1-3].
For smooth domains the non-local boundary problem in R3 for the Laplace equation

is stated as follows: let Ω be a simply connected bounded domain from the class C(2,α),
0 < α < 1, S be a closed surface from C(2,α), S ⊂ Ω. Let further ζ = z(x) be a C(2,α)-
diffeomorphism [4] from ∂Ω into S. Assume that the boundary function f ∈ C(∂Ω).

We will find a function ϕ ∈ C(∂Ω) for which the following boundary condition is
satisfied

ϕ(x)−Kϕ(x) = f(x), x ∈ ∂Ω,

where

Kϕ(x) = v(z(x)) = −
∫

∂Ω

∂G(z(x), y)

∂νy

ϕ(y)dSy.

Here G is the Green function of the Dirichlet problem for the domain Ω, νy is the outer
normal, x ∈ ∂Ω.

The non-local boundary problem in the disc is studied in the monograph [5, p. 312].
Let us introduce necessary definitions.
The Newton volume potentials and simple-layer potentials are defined as follows:

V g(x) =

∫

Ω

Γ(x, y)g(y)dy, UΨ(x) =

∫

∂Ω

Γ(x, y)Ψ(y)dSy,
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where g ∈ C(Ω), Ψ ∈ C(∂Ω), Γ(x, y) = |x− y|−1. Let us note that

G(x, y) = Γ(x, y)− U δ′x(y),

where δ′x is the density of balayage [6] for the unit Dirac measure δx, x ∈ Ω,

Γ(x, y) = U δ′x(y), y ∈ R3 − Ω, δ′x ∈ C(∂Ω).

Let us define the balayage operator [6]

f ′(y) = Tf(y) = −
∫

Ω

∂G(x, y)

∂νy

f(x)dx, f ∈ C(Ω).

Define the space

B2 =

{
f : f ∈ C(4,α),

∫

∂Ω

f(x)γ(x)dSx = 0

}
, Uγ(x) = 1, x ∈ Ω, γ ∈ C(3,α).

It is assumed that Ω ∈ C(6,α′), S ∈ C(6,α′), ζ = z(x) ∈ C(6,α′).
Theorem 1. The solution to problem (1) exists if and only if f ∈ γ⊥, where

Uγ(x) =

∫

∂Ω

|x− y|−1γ(y)dSy = 1, x ∈ Ω, γ ∈ C(3,α), γ⊥ is the annihilator, f ∈ C(4,α).

Proof of sufficiency. We seek the solution in the space C(4,α)(Ω). Obviously the
solution v admits the representation

v(x) = H0(x)−
∫

Ω

G(x, y)H1(y)dy (2)

where H0, H1 are harmonic functions for which H0(x)=v(x), H1(x)=∆v(x), x ∈ ∂Ω.
H0(x)= v(x)= ϕ(x), x ∈ ∂Ω (v(x)=ϕ(x), x ∈ ∂Ω). Due to boundary conditions (2)
gives

∂v(x)

∂νx

= g(x) =
∂H0(x)

∂νx

+ H ′
1(x), H ′

1(x) = g(x)− ∂H0(x)

∂νx

, H1(x) = T−1H ′
1,

H0(x)−H0(z(x)) = f(x)−
∫

Ω

G(z(x), y)H1(y)dy, H1(y) = T−1g(y)

−T−1

(
∂H0

∂νx

)
(y), ϕ(x)−Kϕ(x) = f1(x), f1(x) = f(x)− T−1g(y),

Kϕ(x) = H0(z(x)) +

∫
G(z(x), y)T−1

(
∂H0

∂νx

)
(y)dy (H0|∂Ω = v|∂Ω = ϕ).

It is not hard to show that the operator Aϕ = ϕ −Kϕ maps B2 into B2. Besides
the homogeneous equation ϕ − Kϕ = 0 in B2 has the trivial solution only. Thus, in
the space B2 there exists a continous inverse operator A−1.

The proof of necessity follows from the previous argument.
Now we pose the non-local problem for ∆3v = 0. Let us find the solution v belonging

to the space C(6,α)(Ω) satisfying the following boundary conditions:

v(x)− v(z(x)) = f(x) ∈ C(6,α′), 0 < α < α′ < 1,
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∂v(x)

∂νx

= g1(x) ∈ C(5,α′), Ω ∈ C(8,α′) S ∈ C(8,α′), (3)

∂2v(x)

∂ν2
x

= g2(x) ∈ C(4,α′), ζ = z(x) ∈ C(8,α′).

The solution v ∈ C(6,α)(Ω) admits the

v(x) = H0(x)−
∫

Ω

G(x, y)H1(y)dy +

∫

Ω

G(x, y)

∫

Ω

G(y, z)H2(z)dzdy.

Therefore due to the boundary conditions we come to the second kind Fredholm equa-
tion

ϕ−Kϕ = f1 (v|∂Ω = H0|∂Ω = ϕ),

where f1 depends on f, g1, g2, and Kϕ depends on H0, H1 and H2. Besides, H1 and
H2 are defined through ϕ, g1, g2,

∂H0

∂νx
, ∂2H0

∂ν2
x

. In particular, to find H2 we use the first
boundary condition

∂v

dνx

= g1 =
∂H0

∂νx

−H ′
1 − TV H2

G

(
V H2

G (x) =

∫

Ω

G(x, y)H2(y)dy

)
.

Thus,

TV H2
G (x) = Ψ2(x) =

∂H0(x)

∂νx

−H ′
1(x)− g1(x). (4)

To define the boundary value H1 one has to consider the second derivative with respect
to νx of the expression [7, p. 115]

v(x) = H0(x)−
∫

Ω

G(x, y)F (y)dy F |∂Ω = H1,

H1(x) =
1

4π

[
g2(x)− ∂2H0(x)

∂ν2
x

− ∂2UΨ1
i (x)

∂ν2
x

+
∂2UΨ1

e (x)

∂ν2
x

]
,

Ψ1(x) = TF (x) = g1(x)− ∂H0(x)

∂νx

.

Due to (4) H2 (∆H2 = 0) is defined by

∫

Ω

V H2
G (x)dx

|x− y| =

∫

∂Ω

Ψ2(x)dSx

|x− y| , y ∈ R3 − Ω.

Thus, the following assertion holds.
Theorem 2. The solution to problem (3) exists if and only if f ∈ B3, where

B3=

{
f : f ∈ C(6, α),

∫

∂Ω

f(x)γ(x)dSx =0

}
, Uγ(x)=1, x∈Ω, γ∈C(5, α)(∂Ω).



62 Kapanadze J.

R E F E R E N C E S

1. Bitsadze A.V. Some Classes of Partial Differential Equations. (Russian) Moscow, 1981.
2. Gordeziani D.G. On a Method of Non-local Boundary Problems. (Russian) Tbilisi, TGU, 1981.
3. Bitsadze A.V. To the Theory of Non-local Boundary Problems. TGU, 1981.
4. Poznyak E.G., Shikin E.V. Differentsialnaiya. Geometriya. (Russian) Moscow, 1990.
5. Bitsadze A.V. Foundations of the Theory of Analytic Functions of a Complex Variable. (Rus-

sian) Moscow, 1984.
6. Landkof N.S. Foundations of the Modern Theory of Potentials. (Russian) Moscow, 1966.
7. Gunter N.M. Potential Theory and its Application to Problems of Mathematical Physics.

(Russian) Izd. tekh-teoret. literat., Moscow, 1953.

Received 30.04.2009; revised 21.09.2009; accepted 22.10.2009.

Author’s address:

J. Kapanadze
Institute of Geophysics
1, M. Aleksidze St., Tbilisi 0193
Georgia


