
Reports of Enlarged Session of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 23, 2009

UNIQUENESS OF SOLUTIONS TO EXTERIOR BOUNDARY VALUE
PROBLEMS OF THERMOELASTOSTATICS

Ivanidze D., Ivanidze M.

Abstract. We consider the Dirichlet and Neumann type exterior boundary value problems of
thermoelasticty in the space of vector functions which are bounded at infinity and establish
the structure of such solutions. On the basis of the results obtained we derive sufficient
conditions which guarantee uniqueness of solutions.
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We investigate the uniqueness of solutions to the Dirichlet and Neumann type
exterior boundary value problems (BVP) of thermoelasticty in the space of vector
functions which are bounded at infinity. This kind of function space appears naturally
in the study of nonhomogeneous BVPs of thermoelasticity for unbounded domains.

Let Ω+ be a bounded domain of R3 with the boundary S = ∂Ω+. For simplicity,
we assume that S is a C2,α-smooth surface with 0 < α ≤ 1. We denote Ω− = R3 \Ω+.

The differential equations of thermoelastostatics read as ([1-3]),

A(∂)u(x)− γ grad ϑ(x) = Φ(x),

∆ϑ(x) = Φ4(x),
(1)

where A(∂) is the matrix differential operator generated by the classical Lamé equa-
tions,

A(∂)u = µ∆u + (λ + µ) grad div u,

λ and µ are the Lamé constants, γ ia thermal constant, u = (u1, u2, u3) is the displace-
ment vector, Φ = (Φ1, Φ2, Φ3) and Φ4 − Ω− are given smooth functions with compact
support.

For a surface element with the unit normal vector n = (n1, n2, n3), the stress vector
in the thermoelasticity theory is calculated by formula

P (∂, n)U = T (∂, n)u− γ n ϑ,

where U = (u, ϑ) = (u1, u2, u3, ϑ)>, and

T (∂, n)u = 2µ
∂u

∂n
+ λn div u + µ[n× rot u].

Note that T (∂, n)u is the stress vector of the classical elasticity theory. Now we for-
mulate the basic exterior BVPs.

Problem (D). Find a vector function U ∈ [C2(Ω−)]4 ∩ [C1(Ω−)]4 which solves the
system of differential equations (1) and satisfies the Dirichlet boundary condition on S

[ u ]− = f, [ ϑ] − = f4.
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Problem (N). Find a vector function U ∈ [C2(Ω−)]4 ∩ [C1(Ω−)]4 which solves the
system of differential equations (1) and satisfies the Neumann boundary condition on
S

[ P (∂, n)U ]− = g,
[ ∂ϑ

∂n

]−
= g4.

Here f = (f1, f2, f3), g = (g1, g2, g3), f4 and g4 are given smooth functions on S.
It is clear that the boundary value problems for the temperature function ϑ is

separated and we obtain the classical Dirichlet and Neumann problems for Poisson’s
equation, respectively: ϑ solves the following differential equation in Ω−

∆ϑ = Φ4

and on S satisfies either the Dirichlet condition

[ ϑ ]− = f4

or the Neumann condition [ ∂ϑ

∂n

]−
= g4.

It is well known that in the space of functions which decay at infinity, the above BVPs
for ϑ are uniquely solvable. Moreover, if ϑ = o(1) as |x| → ∞, then

ϑ(x) =
θ0

|x| +O(|x|−2), grad ϑ(x) = − θ0

|x|3 x +O(|x|−3), (2)

where

θ0 = − 1

4π

∫

S

[ ∂ϑ(y)

∂n(y)

]−
dSy − 1

4π

∫

Ω∗

Φ4(y) dy.

Here the domain Ω∗ := supp Φ4 has a finite diameter.
Assuming that ϑ as a solution of the separated problem is a known function, form

the above formulated basic boundary value problems we get the following BVPs for
the nonhomogeneous Lamé equations.

Problem (I)−. Find a solution vector u ∈ [C2(Ω−)]3 ∩ [C1(Ω−)]3 which solves the
system of differential equations in Ω−

A(∂)u = Φ + γ grad ϑ, (3)

and satisfies the Dirichlet boundary condition on S

[u]− = f.

Problem (II)−. Find a solution vector u ∈ [C2(Ω−)]3∩ [C1(Ω−)]3 which solves the
nonhomogeneous system of differential equations (3) in Ω− and satisfies the Neumann
boundary condition on S

T (∂, n)u = g + γ nϑ.

From (2) it is easy to see that the right hand side vector function in (3) decays at
infinity as O(|x|−2), in general. Therefore we have to look for solutions of the equation
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(3) in the space of vector functions which are bounded at infinity. This complicates
the investigation of BVPs under consideration.

First we prove some auxiliary assertions which are crucial in our analysis.
We rewrite equations (3) in the form

A(∂)u(x) = −θ0 γ

|x|3 x + Ψ(x) + Φ(x), x ∈ Ω−, (4)

where

Ψ(x) = γ
[

grad ϑ(x) +
θ0

|x|3 x
]
.

It is clear that Ψ(x) = O(|x|−3) as |x| → ∞. Recall that Φ has a compact support.
Lemma 1. The vector

u(0)(x) = ϑ0 α
x

|x| (5)

with α = γ
2(λ+2µ)

, is a particular solution of the nonhomogeneous differential equation

A(∂)u = −θ0 γ

|x|3 x, x ∈ R3\{0}.

Denote by Γ(x− y) the fundamental matrix of the operator A(∂) ([3])

Γ(x) = [ Γkj(x) ]3×3, Γkj(x) =
λ′δkj

|x| +
µ′xkxj

|x|3 ,

where δkj is the Kronecker symbol and

λ′ = − λ + 3µ

8πµ(λ + 2µ)
, µ′ = − λ + µ

8πµ(λ + 2µ)
.

Lemma 2. Let Ψ and Φ be as in (4) and

u(1)(x) =

∫

Ω−

Γ(x− y) [ Ψ(y) + Φ(y) ] dy, x ∈ Ω−, (6)

Then u(1) solves the differential equation

A(∂)u(1)(x) = Ψ(x) + Φ(x), x ∈ Ω−,

and has the following asymptotic behaviour at infinity

u(1)(x) = O(|x|−1 ln |x|) as |x| → ∞.

Proof. Since Φ is smooth and has a compact support, we get
∫

Ω−

Γ(x− y) Φ(y) dy = O(|x|−1) as |x| → ∞.
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On the other hand, since Ψ is smooth and Ψ = O(|x|−3) as |x| → ∞, one can show by
the appropriate decomposition of the domain of integration Ω− that

∫

Ω−

Γ(x− y)Ψ(y)dy = O(|x|−1 ln |x|) as |x| → ∞.

This proves the lemma.
Lemma 3. Any bounded solution of the homogeneous equation

A(∂)u(x) = 0, x ∈ Ω−, (7)

can be represented at infinity in the form

u(x) = C + O(|x|−1) as |x| → ∞,

where C = (C1, C2, C3) is a constant vector.
Proof. Let u be a solution of the homogeneous equation (7). Since A(∂) is an

elliptic operator with constant coefficients, we have u ∈ [C∞(Ω−)]3. Let B(0, R) be a
ball centered at the origin and radius R > 0 such that Ω+ ⊂ B(0, R). Further, let w
be a C∞(R3)-regular vector function with property:

w(x) = u(x) for x ∈ Ω− \B(0, R),

i.e., w is a extension of the vector function u from Ω− \ B(0, R) onto the whole space
R3. Then it is clear that

A(∂)w(x) = G(x), x ∈ R3, (8)

where G is a vector function with compact support and supp G ⊂ B(0, R).
Applying the generalized Fourier transform to equation (8) we get

A(−iξ)ŵ(ξ) = Ĝ(ξ), ξ ∈ R3. (9)

This equality is understood in the sense of the Schwartz space of tempered distributions
S(R3). Since det A(−iξ) = µ2 (λ + 2 µ) |ξ|6 6= 0 for ξ 6= 0, we conclude form (9)

ŵ(ξ) = [ A(−iξ) ]−1 Ĝ(ξ) +
M∑

|β|=0

Cβ δβ(ξ),

where β = (β1, β2, β3) is a multi-index, Cβ = (C1β, C2β, C3β) are constant vectors, M is
a natural number and δ(·) is the Dirac’s distribution. Therefore, with the help of the
generalized inverse Fourier transform we arrive at the relation

w(x) = F−1
ξ→x[ A

−1(−iξ) Ĝ(ξ) ] +
M∑

|β|=0

Cβ xβ

=

∫

R3

Γ(x− y) G(y) dy +
M∑

|β|=0

Cβ xβ. (10)
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Here we applied that F−1
ξ→x[ A

−1(−iξ)] = Γ(x) (see, e.g., [1]).
Now, taking into account that G has a compact support, we conclude that the first

summand in the right hand side in (10) decays at infinity as O(|x|−1) as |x| → ∞.
Due to the boundedness of w at infinity, it follows that Cβ = 0 for all β with |β| 6= 0.
Therefore we finally get

w(x) =

∫

R3

Γ(x− y) G(y) dy + C0,

with a constant vector C0. Since the support of G is compact the proof follows.
Lemma 4. Any solution of equation (6) is representable in the form

u(x) = u(0)(x) + u(1)(x) + v(x) + C, (11)

where u(0) and u(1) are given by formulas (5) and (6) respectively, C = (C1, C2, C3) is
a constant vector, and v is a solution to the homogeneous equation A(∂)v(x) = 0 in
Ω− which decays at infinity as v(x) = O(|x|−1).

If u satisfies the condition

lim
R→∞

1

4πR2

∫

Σ(0,R)

u(x) dΣ(0, R) = 0, (12)

where Σ(0, R) := ∂B(0, R), then the constant vector C in (11) vanishes.
Proof. It follows immediately from Lemmas 1-3.
Denote by H(Ω−) the class of vector functions U = (u, ϑ) ∈ [C2(Ω−)]4 ∩ [C1(Ω−)]4,

such that ϑ(x) = o(1) and u(x) = O(1) as |x| → ∞ and, in addition, u satisfies the
condition (12).

Now we are in the position to prove the following basic theorem.
Theorem 5. The exterior boundary value problems (D) and (N) have at most one

solution in the class of vector functions H(Ω−).
Proof. Due to the linearity of the problems in question, it suffices to prove that the

homogeneous BVPs (D) and (N) have only the trivial solution. It is clear that ϑ(x) = 0
in Ω−, since the homogeneous exterior Dirichlet and Neumann BVPs for the Laplace
equation possess only the trivial solutions in the space of functions decaying at infinity.
Therefore the displacement vector u solves the homogenous equation A(∂)u = 0 in Ω−,
satisfies either the homogeneous Dirichlet type condition [u]− = 0 or the Neumann
type condition [Tu]− = 0 on S. Moreover, u decays at infinity as

u = O(|x|−1 ln |x|), |x| → ∞,

due to the Lemmas 1-4 and Theorem 5. One can easily show that for such vector
functions there holds Green’s identity

∫

Ω−

A(∂)u · u dx = −
∫

S

[ Tu ]− · [ u ]− dS +

∫

Ω−

E(u, u) dx,
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where the so called potential energy density E(u, u) is a positive definite quadratic
form with respect to the deformations ekj = 2−1(∂juk + ∂kuj),

E(u, u) ≥ δ0

3∑

k,j=1

e2
kj, δ0 = const > 0.

Due to the homogeneity of the BVPs, from the above Green’s formula it follows that
E(u, u) = 0 in Ω−. Therefore u is a rigid displacement vector u(x) = [a× x] + b in Ω−,
and since u ∈ H(Ω−) finally we conclude that u(x) = 0 in Ω−.
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