Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 23, 2009

ON THE UNIFORM CONVERGENCE OF MULTIPLE POWER SERIES ON THE DISTINGUISHED BOUNDARY

Gogoladze L.

Abstract. The sufficient condition is found for the multiple power series of the function, analytic in Δ_s and continuous on $\Delta_s \bigcup \Gamma_s$ $(s \ge 1)$ to be uniformly convergent on $\overline{\Delta}_s$.

Keywords and phrases: Multiple power series, analytic functions, uniform convergence.

AMS subject classification (2000): 32A05.

Let C^s be a s- dimensional space of complex numbers, $Z = (Z_1, \dots, Z_s), Z_k = r_k e^{it_k}, r_k \ge 0, t_k \in [-\pi, \pi], k = 1, \dots, s,$

$$\Delta_s = \{Z_k : |Z_k| < 1, \ k = 1, \cdots, s\}$$
$$\bar{\Delta}_s = \{Z_k : |Z_k| \le 1, \ k = 1, 2, \cdots, s\}$$
$$\Gamma_s = \{Z_k : |Z_k| = 1, \ k = 1, \cdots, s\}$$

Denote by $A(\Delta_s \bigcup \Gamma_s)$ the space of functions of s complex variables, that are analytic on Δ_s and continuous on $\Delta_s \bigcup \Gamma_s$. Let \bar{Q}_j , j = 1, 2, 3, 4 denote the closed quadrants of the plane C.

The following theorem holds.

Theorem. Let $f \in A(\Delta_s \bigcup \Gamma_s)$ and let

$$\sum_{k=0}^{\infty} C_k(f) Z^k \tag{1}$$

be its s dimensional power series. If for some $j \in \{1, 2, 3, 4\}$

$$C_k(f) \in \overline{Q}_j, \quad k = 0, 1, \cdots$$

then series (1) uniformly converges to the function f on Γ_s .

This theorem is new in a one-dimensional case too.

Received 29.06.2009; revised 22.09.2009; accepted 17.11.2009.

Author's address:

L. Gogoladze Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: lgogoladze1@hotmail.com