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ON EXISTENCE AND UNIQUENESS OF SOLUTION OF GENERAL SECOND
ORDER ELLIPTIC TYPE DIFFERENTIAL EQUATION IN HILBERT SPACE

Dochviri B., Purtukhia O., Sokhadze G.

Abstract. General type of elliptic differential equation in Hilbert space is considered. Theo-
rem of existence and uniqueness is given. Probabilistic representation of the solution is given.
The forward and backward stochastic differential equations technics is used.
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The basic problem of this paper is the possibility of probabilistic representation
of solution of general second order elliptic type differential equation in Hilbert space.
The equations of this type we have considered in more general case than usual. As
elliptical parts we consider the operators obtained as superposition of logarithmical
gradients of given measure and differential operators. Such kind of possibilities were
considered by Belopolskaya J.I. and Daletskyi J.L. in [1]. The well developed theory of
logarithmical gradient (see Bogachev V.V. [2] and the references there in) and theories
of propabilistic representation of the solutions of parabolic and elliptic equations allow
us to solve this problem.

Let H+ ⊂ H ⊂ H− equipped Hilbert space with Hilbert-Schmidt embeding. The
duality between H− and H+ denoted by 〈u, k〉, u ∈ H−, k ∈ H+. The scalar and norms
products in this spaces we denote as (h, k)+, ||h||+, h, k ∈ H+; (h, k), ||h||, h, k ∈ H and
(h, k)−, ||h||−, h, k ∈ H− respectively. In case when u ∈ H−, k ∈ H+, the duality
〈u, k〉 we’ll write as the scalar product in H : 〈u, k〉 = (u, k). The Borel σ-algebra in
topological space K is denoted by <(K). Let µ be the measure on <(H−). We say,
that µ has a logarithmical derivative βµ(x, h) = 〈λ(x), h〉, along of constant directions
h ∈ H+, if for any test functional ϕ ∈ C1

b (H−) the formula of integration by part is
holds:

∫

H−
(∇ϕ(x), h)µ(dx) = −

∫

H−
ϕ(x)βµ(x, h)µ(dx). (1)

In this case we write µ ∈ Ξ0(H−) and function λ(x) we call as vector logarithmical
derivative of measure µ. If relation (1) is fulfilled when instead of h in (1) is substituted
vector field z(x) : H− → H+ then we say that measure has logarithmical derivative
along z. Let C1(H−, H−, H+) is the class of vector fields defined on H− with values in
H− and continuously differentiable along H+. Let σ1(H+) denotes the space of vector
fields z(x) : H− → H+ from the class C1(H−, H−, H+) with the norm

‖z‖1 = sup
x∈H−

{‖z′(x)‖L(H−,H+), ‖z(x)‖−} < ∞.
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It is known (see [1]), that if µ ∈ Ξ1(H−) and z ∈ σ1(H+), then µ has logarithmical
gradient along z and the following formula is true

βµ(z(x), x) = (λ(x), z(x)) + trHz′(x). (2)

Let Ξ1(H−, H) ⊂ Ξ0(H−) denotes the class of measures with smooth along H
logarithmical derivative λ(x) such, that λ′(x) ∈ L(H) and
V rai sup

x∈H−
‖λ′(x)‖L(H) < ∞. Let introduce the norm

σ1,2(z) =

{∫

H−
[‖z(x)‖2 + trHz′(x)z′(x)∗]µ(dx)

} 1
2

in the space C1(H−, H−, H).
The completing of C1(H−, H−, H) by this norm, denoted by H2

1 (H−, H, µ), is Hilbert
space. If L1(H−, µ) is the space of µ-integrable functions, then we obtain, that linear
differential operator

βµ : z → (z(x), λ(x)) + trH(z′(x)))

realizes continuous mapping

βµ : σ1(H+) → L1(H−, µ).

Moreover we have
∫

H−
|βµ(z, x)|2µ(dx) = − ∫

H−
{trH(z′(x))2

−(λ′(x)z(x), z(x))}µ(dx) ≤ c · σ2
1,2(z).

(3)

Hence βµ continuously can be extended on whole H2
1 (H−, H, µ). This extension we

denote by βµ(z, x) too. So, if µ ⊂ Ξ1(H−, H) and z ⊂ H2
1 (H−, H, µ), then measure µ

is differentiable along z, its logarithmical derivative βµ ∈ L2(H−, µ) and estimation (3)
is hold.

Note, that for kernel operator z′(x) the formula (2) is fulfilled, but the logarithmical
gradient exists even if z′(x) is Hilbert-Schmidt operator.

Consider the elliptic differential equation

(Lu)(x) + F (x, u(x), (∇u)σ) = 0, (4)

where (Lϕ)(x) = 1
2
βµ(x, σσ∗∇ϕ(x)) + 〈Ax,∇ϕ(x)〉 + 〈b(x),∇ϕ(x)〉, A is the linear

operator, σ is a linear operator such, that σσ∗ represents Hilbert-Schmidt operator,
F (x, y, z)-function on H− × R × L(H−, H). Our aim is to find the conditions for
existence and uniqueness of weak solutions for (4) and connect this solution to solution
of corresponding stochastic differential equation (or system).

For this reason we make regularization of equation (4) and enstead of σ in (4)
substitute σθn, where θn, n = 1, 2, ... the sequence of Hilbert-Schmidt operators in H
which converges to unit operator I (under the operator norm). Then (4) has the form

1
2
trHσθnθ∗nσ∇2un + (Ax + 1

2
λ(x) + b(x), σθnθ

∗
nσ∇un)+

F (x, u(x), (∇un)σθn) = 0.
(5)
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Let us consider forward stochastic differential equation

dXt = AXtdt + (
1

2
σθnθ

∗
nσ

∗λ(Xt) + b(Xt))dt + σθndWt, t ≥ 0, X0 = x (6)

and backward stochastic differential equation

dY x
t = F (Xx

t , Y x
t , Zx

t )dt− Zx
t dWt, 0 ≤ t ≤ T < ∞, Y x

t = x (7)

And suppose, that the following conditions are fulfilled:
1) A is unbounded linear operator with domain D(A) ⊂ H, which is generator of

strongly continuous semigroup etA, t ≥ 0 in H. Moreover ∃m > 0, a > 0 such that
||etA|| ≤ meat, t ≥ 0;

2) b : H− → H and exists the constant L > 0 such, that is valid the following
inequality

||b(x)− b(y)|| ≤ L||x− y||.
Furthermore b(·) ∈ C1(H−, H);

3) σ is a linear continuous operator etAσ ∈ L2(H−, H) and

||etAσ||L2(H−,H) ≤ Lt−γeat

for some L > 0 and γ ∈ [0, 1/2) ;
4) Operators A + 1

2
σσ∗λ′x(x) + b′x(x) are dissipative in the following sense: for

∀x ∈ H, y ∈ D(A) we have

(Ay, y) +
1

2
(σσ∗λ′x(x)y, y)) + (b′x(x)y, y) ≤ 0;

5) The function F (·, ·, ·) is determined on H × R × H−, takes real values and has
derivatives over all arguments;

6) There exists such constant C > 0, that

|F (x, y, z)| ≤ C(1 + |y|+ |z|2);

7) || 5x F (x, y, z)|| ≤ C ;
8) ||∇zF (x, y, z)||− ≤ C(1 + ||z||−) ;
9) |∇yF (x, y, z)| ≤ C(1 + ||z||2−) ;
10) F represents the monotone function, with constant monotony ρ > 0, in the

following sense: for ∀x ∈ H, y, y′ ∈ R, z ∈ H− we have

(y − y′)(F (x, y, z)− F (x, y′, z)) ≤ −ρ|y − y′|2.

It follows from [7,8], that in conditions 1)-10) the system of equations (6),(7) has
unique solution (Xx(n), Y x(n), Zx(n)), such, that:
a) For any p ∈ [2,∞) and T > 0 we have Xx

(n) ∈ Lp(Ω; C(0, T ); H) and

E[ sup
t∈[0,T ]

|Xx
t |p] ≤ C(1 + ‖x‖)p,



On Existence and Uniqueness of Solution .... 23

where C is the constant depended on p, γ, T, L, a and m;
b) Y x is continuous process adapted with {Ft}t≥0 = σ{Wt, 0 ≤ t ≤ T} and bounded
by constant C

ρ
;

c) Zx represents the progressively measurable process and for any ε > 0

E

∫ ∞

0

e−2εt‖Zt‖2dt < ∞;

d) For each T > 0, p ≥ 1 the mapping x → (Y x|[0,T ], Z
x|[0,T ]) is continuous from H in

Lp(Ω; C(0, T ), R)× Lp(Ω; L2(0, T ; H−)).
Theorem. In the equipped separable real Hilbert space H+ ⊂ H ⊂ H− consider

elliptic differential equation (4) and conditions 1)-10) are fulfilled. If µ ∈ Ξ1(H−, H)
and σσ∗ represents Hilbert-Schmidt operator, then there exists unique solution of the
equation (4). Moreover there exists unique solution of forward-backward stochastic
differential system (6)-(7) - (Xx(n), Y x(n), Zx(n)), which satisfies properties a), b), c)
and d) for each n. This solution converges for n → ∞, θn → I, θn ∈ L2(H, H) and
the solution of (4) can be represented in form u(x) = Y x

0 (∞).
Scheme of proof. In the beginning let us show, that, based on construction in

Theorem 5.2 from [7], the equation (5) has unique solution and the following rep-
resentation is valid un(x) = Y x

0 (n). Using property b) let us show, that this value is
uniformly bounded by n and therefore there exists sequence {nk} such, that for k →∞
there exists the limit Y x

0 (nk). Denote this limit by Y x
0 (∞). Let us show, that it satisfies

the equation (4). It is easy to see, that for θn → I we have

trHσθnθ
∗
nσ

∗∇2u + (λ(x), σθnθ
∗
nσ∗∇u) → βµ(σσ∗∇u, x)

(for instance it follows from (3)). Therefore using properties 6)-10) we obtain, that
u(x)− un(x) converges to 0 in respective space.

Remark. Analogously we can show, that Y x
t = u(Xx

t ) and Zx
t = ∇u(Xx

t )σ .
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