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We shall consider the solution of the class of plane problems in elasticity corre-
sponding to a distribution of radial cracks, equal and finite in length, originating at
the boundary surface of a circular hole in an infinite plate under the load system shown
in Figure 1. The geometry of the internal boundary γ, can be conveniently described
by considering the plate as the complex Z plane, where Z = x+ iy = reiθ Then, if the
center of the hole is chosen as Z =0, we specify that radial cracks of equal length L, lie
along θ=0, 2π/κ,. . .,(κ−1)2π/κ, where κ≥1 is an integer which specifies the number
of cracks.

Fig.1. Geometry and loading for the single crack (k=1).

Due to the irregular geometry of the internal boundary, it would appear that the
problem described above can be most conveniently handled by the complex variable
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method of Muskhelishvili [1]. This method depends upon the representation of the
well-known Airy’s stress function U (x,y), in terms of two analytic functions of the
complex variable Z, namely ϕ(Z) and ψ(Z) [1], where

U (x, y) = Re

[
Z̄ϕ (Z) +

∫

Z

ψ (Z) dZ

]
. (1)

With this representation, the stress components in rectangular coordinates can be
written as:

σy + σx = 2
[
ϕ′ (Z) + ϕ′ (Z)

]
= 4Re [ϕ′ (Z)] , (2)

σy − σx + 2iτxy = 2
[
Zϕ′′ (Z) + ψ′ (Z)

]
. (3)

It is convenient for the purpose of enforcing boundary conditions to introduce an
auxiliary complex plane, the ζ plane, such that the unit circle ζ = δ = eiβ (where β is
used here to denote angular measure in the ζ plane), and its exterior are mapped into
γ and its exterior, respectively, by the analytic function

Z = ω (ζ) . (4)

The stress functions ϕ(Z ) and ψ(Z ) will be considered as function of the param-
eter ζ. The necessity for introducing considerable new notation can be avoided by
designating ϕ(Z )=ϕ[ω(ζ)] as ϕ (ζ) etc., which leads to such relationships as ϕ′(Z )=
ϕ′(ζ)/$′(ζ) etc.

Above-described problem requires the determination of the functions ϕ(ζ) and ψ(ζ)
which are analytic for |ζ|>1 (with the exception of the point at infinity) and lead to
the proper loading conditions at infinity and on the internal boundary γ. The forms of
ϕ(ζ) and ψ(ζ) can be chosen a priori to yield the proper loading condition at infinity.
The condition that γ be load-free can be written as [2]

ϕ (δ) + ω (δ)ϕ′ (δ)
/
ω′ (δ) + ψ (δ) = 0. (5)

The mapping function (4) is the product transformation and can be expressed in
differential form as [2]

dZ/Z =
(
1− ζ−k) dζ

/(
ζ
(
1 + 2 ∈ ζ−k + ζ−2k

) 1
2

)
. (6)

In (6) ∈ is a real parameter such that 0≤|∈|≤1 and the denominator is considered
positive at ζ=1 in order to define the desired branch of the multivalued mapping
function. By varying ∈, the crack depth can be adjusted to assigned values [2].

For purposes of the subsequent stress analysis it is desirable to find a series repre-
sentation of (6) converging on and exterior to the unit circle. The form of such a series
is evidently

Z = ω (ζ) = C

[
ζ +

∞∑
n=1

Anζ
1−kn

]
, (7)
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where the An‘s are real and they may be obtained numerically from simple recur-
sive formulae determined by expanding both sides of (6) in series form and equating
coefficients of equal powers of ζ

A1 =
∈ +1

k
; A2 =

(1− k) ∈ +1

k
A1 +

(1− k)2 − 1

4k
A2

1;

A3 = −1

3

{
A1 − 2 [(1− 2k) ∈ +1]

k
A2 − (1− k) (1− 2k)− 1

k
A1A2 − (1− k)2 ∈ +1

k
A2

1

}
;

Am = − 1

m

{
(m− 2)Am−2 − 2 [(1− (m− 1) k) ∈ +1]

k
Am−1 −

− 1

2k

m−1∑

l=1

{(1− lk) [1− (m− l) k]− 1}AlAm−l −

−1

k

m−2∑

l=1

{(1− lk) [1− (m− l − 1) k] ∈ +1}AlAm−l−1 −

−1

k

m−3∑

l=1

{(1− lk) [1− (m− l − 2) k]− 1}AlAm−l−2;

}
,m = 4, 5, 6, · · ·.

The convergence of (7) on and exterior to the unit circle can be studied by examining
the coefficients An. It can be shown that lim

n→∞
An = 0, thus, using a well-known theorem

found in [3], the series (7) converges exterior to the unit circle and at all points on the
unit circle except at the roots of ζ2k + 2 ∈ ζk + 1 = 0.

The existence of cusps at locations corresponding to the crack roots is ensured in
polynomial mapping approximations [2]. Due to the convergence of (7) at all but a
finite number of points on the unit circle, suitable polynomial approximations Z =

ω (ζ) = C

[
ζ +

N∑
n=1

dnζ
1−kn

]
can be obtained by setting dn ∼= An.

Consider now the case of uniform tension at infinity illustrated in Figure 1. It can
easily be shown that the loading condition σx = σy = T on |Z |=R, where R is very large
is satisfied by choosing ϕ(ζ) and ψ(ζ) such that they approach CTζ/2 and CTγ0ζ

−1

(where γ0 = −
[
1 + 2

N∑
n=1

dnαn (1− 2n)

]
), respectively, for large |ζ|. Therefore, let us

assume that ϕ(ζ) is a polynomial of the form [2]

ϕ (ζ) = CT

[
ζ/2 +

N∑
n=1

αnζ
1−kn

]
. (8)

Next, we write the boundary condition (5) as

ω′ (δ)ψ (δ) = −ω′ (δ)ϕ (δ)− ω (δ)ϕ′ (δ) . (9)

The function $′(ζ)ψ(ζ) is analytic exterior to the unit circle and with ϕ(ζ) assumed
as (8), is given as a continuous function on the unit circle by (9). Thus, if the coefficients
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αn can be chosen so that the coefficients of all positive powers of ζ in the Laurent
expansion of

ω′ (ζ)ϕ (1/ζ) + ω (1/ζ)ϕ′ (ζ) (10)

vanish, we can determine ψ(ζ) explicitly. By multiplying both sides of (9) by
1/2πi(δ−ζ) and integrating around the unit circle, we obtain by a well-known the-
orem [4]

ω′ (ζ)ψ (ζ) = −ω′ (ζ)ϕ (1/ζ)− ω (1/ζ)ϕ′ (ζ) .

It is interesting to note that the cups roots are reflected by singularities in ψ(ζ) in
the form of simple poles.

In conclusion it is necessary to verify that the coefficients αn can be determined
to meet the condition set forth above. If the coefficients of all positive powers of ζ
in the Laurent expansion of (10) are equated to zero, the following system of linear
simultaneous equations results:

αp +
N−p∑
n=1

αp+ndn (1− nk) +
N−p∑
n=1

dp+nαn (1− nk) + dp/2 = 0, p = 1, 2, · · · , N.

The hitherto unspecified constant C occurring in the mapping function will mow
be chosen so that the radius of the circular hole in the physical plane is the unit of
length. Thus, if δ=δ1 is that point on the unit circle in the ζ plane which corresponds
to the function of the crack and the circle in the Z plane, then C is chosen so that
|ω (δ1)| = 1.

In polar coordinates the components of stress and displacement σr, σθ, τrθ, Ur, and
Uθ can be expressed in terms of the original stress function ϕ(Z ) and ψ(Z ) defined by
(2) and (3) form the relations

σr − iτrθ = ϕ′ (Z) + ϕ′ (Z)− e2iθ
[
Zϕ′′ (Z) + ψ′ (Z)

]
,

σϑ + iτrθ = ϕ′ (Z) + ϕ′ (Z) + e2iθ
[
Zϕ′′ (Z) + ψ′ (Z)

]
,

2µ (Ur + iUθ) = e−iθ
[
ηϕ (Z)− Zϕ′ (Z)− ψ (Z)

]
,

where µ = E/2 (1 + ν) , η = (3− ν) / (1 + ν) , E – Young’s Modulus, ν - Poisson’s
ratio.

At the characteristic points of the considered domain we have obtained numerical
results of normal and shearing stresses for three values of crack length L=0,1779; 0,1487;
0,3334; R1=1m, T = 10kg/cm2, θ = π/180;π/4, R1 <r<4, and constructed graphs
(Fig.2, Fig.3).
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a) b)

Fig.2. Normal stresses σr for R1 < r < 4 and a) θ = π/180, b) θ = π/4

a) b)

Fig.3. Shearing stresses σθ for R1 < r < 4 and a) θ = π/180, b) θ = π/4

At the end it is important to explain that results received for one crack by the
boundary element method [5] and the complex variable method are equivalent with
possible exactness of technical works. Investigation for one and multiple cracks made
by the boundary element method gets proper recommendations to underground con-
structions.
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