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Abstract. Plasma-arc cutting process is caused by a diversity of the related effects. The
complexity of mathematical formulation of each, even separate effect is generally known.

In these circumstances significant simplifications can be achieved if in frames of the ten-
tative assumptions one link is found by which correlation of the effects takes basically place
and which is the result of this correlation. In the suggested model the geometrical surface of
cutting represents such link.
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Plasma arc cutting process is caused by a diversity of the related effects (E-field
radiation, gas and liquids flow, including electro conductive ones, heat transfer, phase
changes, etc). The complexity of mathematical formulation of each, even separate
effect is generally known.

In these circumstances significant simplifications can be achieved if in frames of
the tentative assumptions one link is found by which correlation of the effects takes
basically place and which is the result of this correlation. In the suggested model
the geometrical surface of cutting represents such link. Let us take the Cartesian
rectangular system of coordinates: Oxyz (pic. 1: axis Oz is directed through the axis
of the arc and axis Ox - in direction of the speed of cutting ~νp).

All processes and their corresponding physical fields in the system will be considered
to be stationary. In this system the equation of the cutting surface (boundary surface
between the air and the liquid or solid phase) will look like:

z = z(x, y). (1)

Let us bind the cutting surface to the orthogonal curvilinear coordinates ξηζ. Coor-
dinate curves ξ and η lay on the cutting surface; axis ζ is directed perpendicularly to
the surface. Assume that the transformations

(x, y)⇔ (ξ, η) (2)

are one-to-one and smooth enough.
Coordinate curves η will be considered to be collateral to the current line of particles

of the liquid melt on the surface of the liquid film. Experimental data shows that
movement of particles of the liquid film is conditioned by the high speed air flow
(according to estimations, shearing stresses from the air flow exposing to the liquid
film of the metal are 1-2 orders of magnitude higher than the gravity). As this takes
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place the speeds of the particles of the liquid film are much lower than the speed of
particles of the air flow. Under these conditions coincidence of direction of the tangents
η to the coordinate curves to directions of the speeds of the air flow near the boundary
with liquid film can be considered to be a good approximation.

Thus the radius vector of the cutting surface point is - ~R (x(ξη), z(ξη), y(ξη)) .
The ordinary basis vector of the axis ζ is:

~eη =
1∣∣∣∣∣

∂ ~R

∂ξ
× ∂ ~R

∂η

∣∣∣∣∣

∂ ~R

∂ξ
× ∂ ~R

∂η
. (3)

Consider the surface element on the surface of cutting at a point E(ξ, η) :

dA =

∣∣∣∣∣
∂ ~R

∂ξ
× ∂ ~R

∂η

∣∣∣∣∣ dξdη (4)

and relevant volume element of the liquid film

dV = {(ξ, η, ζ) : (ξ, η) ∈ dA, ζ ∈ [0, δ]} ,
where δ = δ(ξη) - is the film thickness (pic.2).

On this small area the element of arc of the length of do at the point of L radiates
in the unit time the power flow:

Pic.1. Geometry of the cutting

dQl = B ·D · dσ · cosϑ · dA · cosψ

LE2
, (5)

where B is intensity of radiation; D - arc diameter; ϑ - an angle between the normal
to the radiate area and direction ~LE towards the area dA; ψ - an angle between the
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direction of radiation ~LE and perpendicular to the irradiated area dA - ~eζ . Cumulative
flow of the arc radiation to the area dA will be received by integration of (5) by the
whole arc length h:

dQ = B ·D · dA ·
h∫

0

cosϑ cosψ

LE2
dσ. (6)

Pic.2. Liquid film element and arc element

Taking into consideration the smallness of the magnitudes δ(ξ, η) let us consider
the thickness of films of the linear approximation of velocity and temperature fields of
the molten metal:

u(ξ, η, ζ) = uu(ξ, η) ·
(

1− ζ

δ

)
,

T (ξ, η, ζ) = Tn · ζ
δ

+ Tu(ξ, η) ·
(

1− ζ

δ

)
,

(7)

where un and Tn are speed and temperature on the film surface; Tn - metal fusing
temperature. In that case average through thickness speed and temperature

um(ξ, η) =
1

2
uu(ξ, η),

Tm(ξ, η) =
1

2
(Tn + Tu(ξ, η)) ,

(8)

If ρ(T ) is a density of the molten metal, mass balance equation in the volume dV
will look in the following way:

∂

∂η

(
ρ (Tm)umδ

√
gξξ
)

= ρn (Tn) νp

(
~eζ ·~i

) ∣∣∣∣∣
∂ ~R

∂ξ
× ∂ ~R

∂η

∣∣∣∣∣ . (9)

The scalar product ~eζ · ~i defines the cosine of the angle between speed of cut and
perpendicular to the area dA. Under the fusion temperature both the phases can exist:



Modeling Exercise of the Plasma Cutting ... 123

magnitudes relating to the liquid phase will be marked with one touch and to solid
phase - with two touches.

Energy balance equation for the volume dV can be presented in the following way:

dQ

dA
=

∂

∂η

(
cp (Tm) · Tm · ρ (Tm) · um · δ · √gξξ

)
+ λ′ (Tn)

Tu − Tn
δ

. (10)

On the boundary of liquid and solid phases the energy balance equation will look like:

λ′ (Tn)
Tu − Tn

δ
= r · ρ′′ (Tn) · νp

(
~eζ ·~i

)
− λ′′ (Tn)

∂T

∂η

∣∣∣∣
ζ=δ+

. (11)

Equations (10) and (11) are written under the assumption of the small angles between
the area dA and approximate area on the fusion surface, i. e. small gradients of the
film thickness.

If the liquid metal is considered as a Newtonian liquid, taking into account (8)
shearing stress on the film surface are connected to the average velocity:

τ = µ (Tm)
2um
δ
, (12)

where µ (Tm) is an absolute viscosity coefficient.
On the ground of the suggested approach let us consider the simplified model prob-

lem. Assume that the task of cutting of a metal sheet by the radiating arc is a plane
one (pic. 3). Coordinate curve lays in the sub space Oxz and the natural parameter
η = s (length of arc) can be taken as a coordinate. The balance equations (9), (10),
(11) will be accordingly rewritten:

d

ds
(ρ (Tm) umδ) = ρ′′ (Tn) νp

dz

ds
,

ρ (Tm) umδ = (ρ (Tm) umδ)z=0 + ρ′′ (Tn) νpz, (9′)

dQ

ds
=

d

ds
(cp (Tm) · Tm · ρ (Tm) · um · δ) + λ′ (Tn)

2 (Tm − Tn)

δ
, (10′)

λ′ (Tn)
2 (Tm − Tn)

δ
= r · ρm (Tn) · νpdz

ds
− λ′′ (Tn)

∂T

∂ξ

∣∣∣∣
ζ=δ

+

. (11′)

Let us define the heat current of radiation (5):

dQl = B ·D · ds · dσ ·
x(s) ·

(
x(s)

dz

ds
− (z(s)− σ)

dx

ds

)

(
x2(s) + (z(s)− σ)2)2 .

By integration of the relation by the arc length we will receive the expression for
dQ

ds
.

The system of the ordinary differential equations relative to the six unknown func-
tions x(s), z(s), Q(s), um(s), Tm(s), δ(s) is received. Provided that the intensity of
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radiation B, diameter of the arc - D and tangent stress - τ(s) on the membrane surface
are known, then (12) and geometrical correlation

(
dx

ds

)2

+

(
dz

ds

)2

= 1

close the system.
The received system of equations was solved by approximate numerical procedures.

Some results are shown on the pic. 5 - the battle front of melting z(x) and distribution
of length of the front of average speed um(s), average temperature Tm(s) of the liquid

metal and thermal current from the arc
dQ

ds
. The approximate numerical solutions of

the model problem qualitatively well reflect the experimental data about the influence
of speed of cut and power of the arc on the geometry of cutting.

Pic.5. Some results of the numerical solution of the model problem
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