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ON THE UNSTEADY MOTION OF A VISCOUS HYDROMAGNETIC FLUID
CONTAINED BETWEEN ROTATING COAXIAL CYLINDERS OF FINITE

LENGTH
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Abstract. The problem of unsteady rotation motion of electrically conducting viscous in-
compressible fluid, contained within two axially concentric cylinders of finite length in the
presence of an axial symmetric magnetic field of constant strength, has been solved exactly
using finite Hankel transform in combination with a technique presented in this paper. This
paper presents a complete of the problem under consideration, which has been of interest
for many years; moreover the Pneuman-Lykoudis solution in Magnetohydrodynamics and
Childyat solution in hydrodynamics appears as a special case of this study. The analysis
shows that the disturbance in the fluid disappear by increasing the magnetic field.
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In recent years, the study of electrically conducting fluids has received much atten-
tion in areas such as rocket flight and high-speed reentry missiles. It is known that the
motion of a conducting fluid in a magnetic field induces electric currents in the fluid,
thereby modifying the field; at the same time, the flow in the magnetic field produces
mechanical forces which in turn modify the motion.

Recently, C. D. Ghildyal has presented a solution of the problem in hydrodynamics
concerning the unsteady motion of a viscous, rotating fluid contained between two
infinitely long coaxial cylinders. However, the motion of an electrically conducting
fluid contained between two coaxial rotating cylinders in the presence of magnetic
field becomes much more complicated. S. Chandrasekhar has discussed the rotational
and thermal instability of a viscous, rotating, electrically conducting fluid within two
infinitely long coaxial cylinders in presence of a magnetic filed. In this paper, we are
directly interested in the deformation of the fluid in the presence of a magnetic field;
hence, we are searching for the velocity distribution in a magnetic field. That is the
fundamental object of this study. After the fluid field is determined, we can study the
electromagnetic field from the knowledge of the boundary and initial condition imposed
upon the field. Not that a wide range of solutions compatible with these conditions
are possible [1, 2, 4-7]. It is convenient for the study of this problem to introduce a
cylindrical system. Let the length of the cylinders be 2L, so that the origin of the
system is located at the middle point on axis of cylinders. We assume that the velocity
field is given by

~V = ~V (ν, u, w), (1)

where ν, u, w are the components of the velocity in the radial, circumferential and axial
directions, respectively. Since the motion of the fluid is primarily in the circumferential
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direct-ions, the radial velocity ν in the flow may be neglected on comparison with the
circumferential velocity u. However, the assumption that the axial velocity w is zero
is true only if the cylinde-rs are infinitely long. If the cylinders are finite in length, the
axial velocity is not zero. Therefore, the “end effects” should be considered. Pneman
and Lykoudis [8] showed that the ”end effects”will be confined to regions very close
to the bounding planes and the axial velocity may be safely neglected in the region
midway between these planes.

Furthermore, we impose a magnetic field of constant strength. H0, in axial direction
and we assume that there are perturbations hr , hθ and hz in the magnetic field and Er,
Eθ, Ez in the electrical field. Note that it can be assumed that hr � h

θ
and hr � hz ,

since the motion occurs in the θ direction. Therefore

~H = ~H(0, h0, H0 + hz). (2)

Similarly,
~E = ~E(0, Eθ, Ez). (3)

It has been assumed throughout this paper that physical and electromagnetic prop-
erties of the flow are known. Since the flow is incompressible with constant properties,
the energy equation and characteristic equation may be omitted; therefore, the problem
is reduced to the solution of the following system of equations, namely: Continuity:

∆ · ~V = 0. (4)

Momentum:

∂~V

∂t
+ (∇ · ~V )~V +

1

ρ
∇p− µ

ρ
∇p− µ

ρ
∇2~V − µe

ρ
( ~J × ~M) = 0. (5)

Maxwell equations:

∇ · ~D − ρe , (6)

∇ · ~H = 0, (7)

∇× ~E + µe
∂ ~H

∂t
= 0, (8)

∇× ~H − ~J − ∂ ~D

∂t
= 0, (9)

∇ · ~J +
∂ρe
∂t

= 0. (10)

Here are: ~V – velocity of the flow (not perturbed), ρ – density of the flow, p – pressure,

µ – dynamical viscosity, ~J – current density, ~H – strength of magnetic field, µe –
magnetic permeability, ~E – strength of electric field, ρe – charge density, t – time.
Note that

~B = µe ~H, (11)

~D = εe ~E, (12)
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~J = σ( ~E + µe~q × ~H), (13)

where ~B is magnetic induction, ~D is displacement current, εe is dielectric constant, σ
is electric conductivity. The system of eq. (4), (5), (6), (7), (8), (9), (10) is subjected
to the conditions imposed upon the hydrodynamic field and those imposed upon the
electromagnetic field. Assuming that both cylinders are rotating in the same direction,
the no-slip condition at the walls of the cylinders requires that

u(a, θ, z, t) = ω1a, (14)

u(b, θ, z, t) = ω2b, (15)

u(r, θ ± L, t) = ωer, (16)

where ω1 and ω2 are angular velocities of the cylinders, a is the radius of the inner
cylinder, b is the radius of the outer cylinder, and ωe is angular velocity of the bounding
end planes.

Moreover, the initial condition, for t = 0, is prescribed, namely,

u(r, θ, z, 0) = f(r, z), (17)

where f(r, z) is a regular function everywhere in the domain under consideration.
In addition to these conditions, we have the conditions imposed by electromagnetic

field which require that on the surface of the discontinuity, such as r = a and r = b,
the normal and tangential components of the magnetic induction and electric field
suffer a discontinuity, which is equal for the magnetic field to the components of the
surface current density at the right angle to the field, and for the electric field to the
components of the surface charge density perpe- ndicuar to the electric field. Note
that the surface current density is measured in amper per meter, and surface charge
density is Coulombs per square meter. However, in accordance with the assumption
that the bounding end planes are of insulating material, we have that the normal and
tangential components of the magnetic induction and electric field are continuous on
those planes.

The main characteristic of the field equations (6), (7), (8) and (10) is that electric

field depends upon the magnetic field through the time variation of ~H; and the magnetic
field depends on the electric field through the time variation of ~D. Therefore, the initial
condition in the electromagnetic field has to be introduced.

Evidently, the time derivative of ~D acts as a source for ~H, and the derivative of
~H acts as a source for ~E. Hence, coupling between the electric field and the mag-
netic field becomes bilateral. Note that the hydrodynamic field is coupled with the
electromagnetic field through the electrobody force. At the first glance, the problem
from the mathematical point of view represe-nts a mixed boundary value problem of
a very complicated nature. That is true. However, the problem can be solved using
the method of the operational calculus outlined in this paper. From the continuity eq.
(4), since circumferential symmetry is assumed, it follows that

u = u(r, z, t). (18)
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Then (5) and (17) lead to following equations in scalar form:

−ρu
2

r
− Fr +

∂p

∂r
= 0, (19)

ρ
∂u

∂t
− µ

(∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

)
− Fθ = 0, (20)

Fz − ∂p

∂z
= 0, (21)

where Fr, Fθ, Fz are coordinates of the electrobody force in r, θ and z direction,
respectively. Then

~F = ~J × ~B, (22)

where ~J and ~B are prescribed by (11) and (13). However, it can be shown that hz is
zero everywhere in the field. The proof is simple. By circumferential symmetry (7)
becomes

∂hz
∂z

= 0, (23)

or
hz = hz(r, t). (24)

Moreover, on the boundary z = ±L we have that the magnetic field is constant, namely
~H = H0~ez . Hence, hz = 0 at the planes z = ±L, and therefore is zero everywhere.
This completes the proof. Hereafter, ~er , ~eθ , ~ez denote the unit vectors in r, θ and z –
direction.

The problem will be solved if.

ρ
∂u

∂t
− µ

(∂2u

∂r2
+

1

r

∂u

∂r
− u

r
+
∂2u

∂z2

)
+ σµ2

e
H2

0u = 0, (25)

subjected to the conditions (14), (15), (16) and (17) is solved.
For such purposes, denote

µ

ρ
= ν;

σµ2
e
H2

0

µ
= Ω2. (26)

Then (25) becomes

∂2u

∂r2
+

1

r

∂u

∂r

( 1

r2
+ Ω2

)
u+

∂2u

∂z2
− 1

ν

∂u

∂t
= 0. (27)

Evidently, if Ω = 0 and in addition L → ∞ then the solution is reduced to the
simple solution, recently given in hydrodynamics for infinite long cylinders. This will
be later on evidently, from resulting velocity field.

Written in operator form, the boundary value problem, under consideration, can
be written as

D{u(r, z, t)} = 0,
u(r, z, 0) = f(r, z),

u(a, z, t) = ω1a,
u(b, z, t) = ω2b,

u(r,±L, t) = ωer,



 t > 0





. (28)
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In conclusion we will get:

u(r, z, t) =
∞∑
m

∞∑
n

[
Amn +

π2

2

α2
mJ1(αmb)

J2
1 (αma)− J2

1 (αmb)
Mmn

]
×

×B1(αmr) cosAnze
−ν(k2

m+A2
n)t+

+
π2

2

∞∑
m

π2

2

α2
mJ1(αmb)

J2
1 (αma)− J2

1 (αmb)
×

×B1(αmr)
[(
G2(αm)+

+
A∗(αm)

k2
m

) cosh kmz

cosh kmL
− A∗(αm)

k2
m

]
= T ∗ + S∗,

where

Amn =
2

L

∫ b
a

∫ +L

−L rf(r, z)B1(αmr) cosAnzdrdz

b2B2
2(αmb)− a2B2

2(αma)
,

An =
2n+ 1

2L
π (n = 0, 1, 2, . . . ),

Mmn =
2 sinAnL

AnL

{A∗(αm)

k2
m

−
[
G2(αm)+

+
A∗(α)m)

k2
m

] A2
n

k2
m

+ A2
n

}
, k2

m = α2
m + Ω2,

G2(β) =
ωe
β

[
b2(J2(βb)Y1(βa)− Y2(βb)J1(βa))−

− a2J2(βa)Y1(βa)− Y2(βa)J1(βa)
]

B1(βr) =J1(βr)Y1(βa)− Y1(βr)J1(βa).

This solution for f(r, z) is obtained by means of Hankel Transform in the form of the
Bessel functions the first and second kind Jτ ( ), Yτ ( ), of the order τ = 1, 2, namely

f(r, z) =
π2

2

∑

β

β2J1(βb)

J2
1 (βa)− J2

1 (βb)
×

×
{

[G2(β)−G1(β)]
cosh

√
β2 + Ω2 z

cosh
√
β2 + Ω2 L

+G1(β)
}
B1(βr),

where

G1(β) =
2ω2b

π(β2 + Ω2)

J1(βa)

J1(βb)
.

The problem of unsteady rotational motion of electrically conducting, viscous, in-
compressible fluid contained within two axially concentric cylinders of finite length in
the presence of an axial symmetric magnetic field, has been studied and solved by
methods of methods of the operational calculus. The solution for the velocity field is
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obtained in an exact from, since the corresponding partial differential equations are
solved exactly.
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