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Abstract. A boundary value problem is posed for an ordinary differential equation describing
the static state of a string. The question as to the accuracy of one method of the solution of
this problem is discussed.
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Let us consider the boundary value problem

ϕ

(∫ 1

0

w′2 dx

)
w′′ = f, 0 < x < 1, (1)

w(0) = 0, w(1) = 0, (2)

characterizing the static state of a string. Here w = w(x) is the displacement function
we are seeking for, while of the given functions f = f(x) and ϕ = ϕ(z) the first
one corresponds to the acting force and the second one is described by stress-strain
relations. It is assumed that ϕ = ϕ(z), 0 ≤ z < ∞, is a continuous or differentiable
function that satisfies the condition

ϕ(z) ≥ α > 0, 0 ≤ z <∞. (3)

When ϕ(z) is a linear function, equation (1) is obtained from Kirchhoff’s string
oscillation equation by eliminating the time argument t [1]. The introduction of the
function ϕ(z) enables us not to restrict the consideration to Hooke’s law in the stress-
strain relation [2].

Let problem (1), (2) have a solution. To find it, we will use M. Chipot’s approach
[3]–[5]. The function we are seeking for is represented as the following product

w(x) = λv(x), (4)

where λ and v(x) are respectively the parameter and the function to be found. The
substitution of (4) into (1) gives

λϕ

(∫ 1

0

(λv′)2 dx

)
v′′ = f. (5)
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Without loss of generality, equation (5) can be replaced by the system of equation

v′′ = f,

λϕ

(∫ 1

0

(λv′)2 dx

)
= 1.

With (2) and (4) taken additionally into account, we come to a conclusion that for the
function v(x) we have the boundary value problem

v′′ = f, (6)

v(0) = 0, v(1) = 0, (7)

while the parameter λ is defined as a solution of the equation

λϕ(sλ2) = 1, (8)

where

s =

∫ 1

0

(v′)2 dx. (9)

The solution of problem (6), (7) has the form

v(x) = (x− 1)

∫ 1

0

ζf(ζ) dζ + x

∫ 1

x

(ζ − 1)f(ζ) dζ. (10)

As for the parameter s figuring in equation (8), from (9) and (10) it follows that its
value is calculated by the formula

s =

∫ 1

0

[∫ x

0

ζf(ζ) dζ +

∫ 1

x

(ζ − 1)f(ζ) dζ

]2

dx. (11)

Let consider the question of the solution of equation (8). By (3) we conclude that
its solution is a positive integer. Let us transform this equation. After squaring its
both sides we get λ2ϕ2(sλ2) = 1 and then multiply the obtained equality by s. As a
result we get sλ2ϕ2(sλ2) = s. If now we introduce the notation

µ = sλ2, (12)

then the obtained equation takes the form

µϕ2(µ) = s. (13)

Let ϕ(z) be a continuous function, 0 ≤ z < ∞. We introduce the interval I =[
0,

s

α2

]
into the consideration and define on it the function g(µ) = µϕ2(µ)− s. Let us

replace (13) by the equation
g(µ) = 0. (14)
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By virtue of (3) and (11), g(0)g
( s
α2

)
< 0. Therefore equation (14) has a solution on

I. To find it, we will use an approximate algorithm. Below we consider two possibilities:
the bisection method and the method of simple iteration.

1. Bisection method. Denoting a0 = 0, b0 =
s

α2
and applying this method [6],

we obtain a sequence of intervals [a0, b0], [a1, b1], . . . , [an, bn], . . . , embedded into each

other, for which g(an)g(bn) < 0, bn − an =
1

2n
(b0 − a0), n = 0, 1, 2, . . . . Hence we

conclude that for the solution µ of equation (14) the inequality 0 ≤ µ− an ≤ 1

2n
s

α2
is

fulfilled. There exists a general limit λ = lim
n→∞

(an
s

) 1
2

= lim
n→∞

(bn
s

) 1
2

which is a solution

of equation (8), and also we have

0 ≤ λ−
(an
s

) 1
2 ≤

(
an
s

+
1

2n
1

α2

) 1
2

−
(an
s

) 1
2
.

2. Simple iteration method. Assume that the function ϕ(z) is differentiable on I.

Rewrite equation (13) as µ =
s

ϕ2(µ)
. Apply the iteration µn+1 =

s

ϕ2(µn)
, n = 0, 1, . . .

[6]. From condition (3) it follows that the function
s

ϕ2(µ)
transform the interval I

into itself. Let 2s
|ϕ′(µ)|
ϕ3(µ)

≤ q < 1 be fulfilled for any µ from I. Then the iteration

process converges for any initial approximation µ0 ∈ I, and λ = lim
n→∞

(µn
s

) 1
2

is a unique

solution of equation (8), while for method error the following estimate
∣∣∣∣∣λ−

(
µn
s

) 1
2

∣∣∣∣∣ ≤
qn

1− q

∣∣∣∣∣
(
µ1

s

) 1
2

−
(
µ0

s

) 1
2

∣∣∣∣∣
is true.
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