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Abstract. The statistical estimating problem for logarithmical derivative of distributions of
random elements in Hilbert space is considered.
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The statistical estimation of various characteristics of a probability measure by
observation data is a topical problem as there is no general solution of the problem
connected with estimation of the measure itself (see [1]). Progress made in tackling this
question in the theory of nonparametric estimation (the Watson–Nadaraya method) in
a finite-dimensional space enables us to extend some results to an infinite-dimensional
case as well.

Let {Ω,J , P} be a fixed probability space, H a separable real Hilbert space, B a
σ-algebra of Borel subsets, ξ a random element with values in H and µ its distribution.
For the element ξ we only know that its distribution µ is smooth. Here the smoothness
implies that there exists a logarithmic derivative of this measure along the constant
direction a ∈ H.

Recall that the measure µ has a logarithmic derivative along the constant direction
a ∈ H if it is differentiable along a and µ′a � µ. In that case l(x, a) = dµ′a

dµ
(x). An also

the measure µ is said to have a derivative along a if there exists a countably additive
measure µ′a such that the following formula of integration by parts

∫

H

(
f ′(x), a

)
H
µ(dx) = −

∫

H

f(x)µ′a(dx)

holds true for any bounded and boundedly differentiable function f(x) : H → R.
If the logarithmic derivative exists along a, then we have the formula

∫

H

(
f ′(x), a

)
H
µ(dx) = −

∫

H

f(x)l(x, a)µ(dx),

which is sometimes used to define a logarithmic derivative along a.
Let further X1, X2, . . . , Xn be a sampling of independent, equally distributed ran-

dom elements with values in H. Let the distribution (i.e the corresponding measure)
be denoted by µ. Assume that for µ we only know that it has a logarithmic deriva-
tive along the constant direction a ∈ H. We are to find an estimate of the unknown
logarithmic derivative l(x, a) using the sampling X1, X2, . . . , Xn.
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Let {Lm} be an increasing sequence of finite-dimensional subspaces of the space H

such that
∞⋃
m=1

Lm is dense in H. Denote by Pm a finite-dimensional projector H on Lm.

Let µm = µ ◦ P−1
m , am = Pma, xm = Pmx, lamm (xm) = Pml(Pmx, Pma). Then conclude

that lamm (xm) is a logarithmic derivative of the measure µm in the space Lm. If pm(xm)
is an everywhere positive and differentiable density of the measure µm, then we have

lamm (xm) =
(grad pm(xm), am)Lm

pm(xm)
.

This logarithmic derivative can be estimated by finite-dimensional techniques using
the samplings

PmX1 = Xm
1 , PmX2 = Xm

2 , . . . , PmXn = Xm
n .

For each m, using the sampling Xm
1 , X

m
2 , . . . , X

m
n we construct effective estimates

l̂mn = l̂amm (xm)n for lamm (xm) and show their convergence to l(x, a) as n,m→∞. In that

case, l̂mn can be regarded as an estimate of l(x, a).
Below we obtain a result for an m-dimensional case and then establish a possibility

of passage to the limit.
Assume that we have the sampling Xj = (X1

j , X
2
j , . . . , X

m
j ), j = 1, 2, . . . , n, of

independent and equally distributed random vectors. To estimate the unknown density
p(x) we use the statistic (see [2])

p̂n(x) =
λmn
n

n∑
i=1

K(λn(x−Xi)),

where

K(x) =
m∏
j=1

Kj(xj), x = (x1, x2, . . . , xm), Kj, j = 1, 2, . . . ,m,

is an arbitrary density function in one-dimensional space. As is well-known, the loga-
rithmic derivative is a vector with components 1

p(x)
∂p(x)
∂xi

. Therefore we must estimate

l(x) =
1

p(x)
grad p(x).

As a statistic we take

l̂n(x) =

n∑
i=1

grad
m∏
j=1

Kj(λn(xi −Xj
i ))

n∑
i=1

m∏
j=1

Kj(λn(xj −Xj
i ))

. (1)

Theorem 1. Let Kj(X), j = 1, 2, . . ., be a density function,

λn →∞, λ2
n lnn

n
→ 0 as n→∞.

Then (1) converges in C(Rn) to l(x) with probability 1.
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In the considered case we take one function K(x). In the conditions of Theorem 1

l̂mn (xm) =

λn
n∑
i=1

m∑
s=1

asnK
′(λn(xsm −Xm

is ))
m∏
j=1
j 6=s

K(λn(xjm −Xm
ij ))

n∑
i=1

m∏
j=1

K(λn(xjm −Xm
ij ))

(2)

converges uniformly as n → ∞ to lamm (xm) with probability 1. As is known (see [3]),
lamm (xm) is a martingale with respect to the system {Lm,Bm, µm} and converges to
l(x, a) if and only if it is uniformly integrable with respect to the measure µ, which in
our case a priori takes place.

Theorem 2. Let K(x) be an even, uniformly continuous function, 0 < K(x) ≤ 1
and ∫

R

K(x) dx = 1; λn →∞, λ2
n lnn

n
→ 0.

Then (2) converges in C(H) to l(x, a) with probability 1.
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