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The non-local boundary problem has been considered in [1-8]. In the case of smooth
domains the non-local boundary problem for the Laplace equation in the space R3 is
posed as follows: Let Ω be a simply connected bounded domain from the class C(2,α),
0 < α ≤ 1, S be a closed surface from C(2,α) belonging to Ω (S ⊂ Ω), and let ζ = z(x) be
a C(2,α)-diffeomorphism from Ω onto S. Assume that the boundary function f ∈ C(∂Ω).
One has fined a function ϕ ∈ C(∂Ω) satisfying the boundary condition

ϕ−Kϕ = f,

where

Kϕ(x) = v(z(x)) = −
∫

∂Ω

∂G(z(x), y)

∂νy
ϕ(y)dSy.

For a biharmonic equation the non-local boundary problem in a circle is considered in
the monograph [9, p. 312]. In this paper we consider the non-local boundary problem
for the equation ∆3v = 0 in a smooth domain Ω.

Let Ω be a simply connected bounded domain from C(5,α), 0 < α ≤ 1, S be a
smooth closed surface from C(5,α) (S ⊂ Ω). Let further ζ = z(x) be a diffeomorphism
from ∂Ω onto S, z(x) ∈ C(5,α), `x be a smooth direction at a point x ∈ ∂Ω, `x ∈ C(4,α)

for which cos(νx̂ `x) 6= 0, x ∈ ∂Ω, νx be the outer normal.
Let us fined a solution to the equation ∆3v = 0 in Ω from C(5,α′)(Ω), 0 < α′ < α ≤ 1

satisfying the following boundary conditions:

v(x)− v(z(x)) = f(x), f ∈ C(5,α),

∂v(x)

∂`x
= g1(x), g ∈ C(4,α), (1)

∂2v(x)

∂`2
x

= g2(x), g2 ∈ C(3,α).

If v is a solution to the problem (1) belonging to C(5,α′)(Ω), then it takes place the
following representation

v(x) = H0(x)−
∫

Ω

G(x, y)H1(y)dy +

∫

Ω

G(x, y)

∫

Ω

G(y, z)H2(z)dzdy, (2)
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where H0, H1, H3 are harmonic functions in Ω satisfying the following boundary
conditions: H0(x) = v(x) = ϕ(x), H1(x) = ∆v(x), H2(x) = ∆2v(x), x ∈ ∂Ω, G is the
Green function for the Dirichlet problem. For the Green function we have [10]

∂G(x, y)

∂`y
=
∂G(x, y)

∂νy
cos(νŷ `y), y ∈ ∂Ω, x ∈ Ω. (3)

Besides, using equalities from [11, p. 115] one can prove that

∂2V F
i (x)

∂`2
x

− ∂2V F
e (x)

∂`2
x

= 4πF (x) cos2(νx̂ `x), F ∈ C2(Ω),

where

V F (x)=

∫

Ω

F (y)dy

|x− y| , UTf (x)=

∫

∂Ω

f ′(y)dSy
|x− y| , T f(y)=f ′(y)=−

∫

Ω

∂G(x, y)

∂νy
f(x)dx,

and V F
i , V

F
e denote respectively the inside limit and outside limit.

Formula (2) implies that

v(x) = H0(x) =

∫

Ω

G(x, y)F (y)dY, F (y) = H1(y)−
∫

Ω

G(y, z)H2(z)dz.

Using this equalities and the second boundary condition of (1) we get

∂v(x)

∂`x
= g1(x) =

∂H0(x)

∂`x
−
∫

Ω

∂G(x, y)

∂`x
F (y)dy x ∈ ∂Ω.

This and (3) imply

g1(x) =
∂H0(x)

∂`x
− F ′(x) cos(νx̂ `x), F ′(x) =

1

cos(νx̂ `x)

[
∂H0(x)

∂`x
− g1(x)

]
.

By virtue of the boundary condition of (1) we have

∂2v

∂`2
x

=
∂2H0(x)

∂`2
x

− ∂2

∂`2
x

[
V F (x)− UF ′(x)

]
=
∂2H0(x)

∂`2
x

− ∂2V F
i (x)

∂`2
x

+
∂2UΨ1

i (x)

∂`2
x

=
∂2H0(x)

∂`2
x

−
[
∂2V F

i (x)

∂`2
x

− ∂2V F
` (x)

∂`2
x

]
+
∂2UΨ1

i (x)

∂`2
x

− ∂2UΨ1
` (x)

∂`2
x

=
∂2H0(x)

∂`2
x

−4πF (x) cos2(νx̂ `x) +
∂2UΨ1

i (x)

∂`2
x

− ∂2UΨ1
` (x)

∂`2
x

, Ψ1 = F ′ = TF.

Let us use again the second boundary condition for representation (2). We get

∂v

∂`x
= g1(x) =

∂H0(x)

∂`x
+H ′1(x)− (V H2

G

)′
(x) cos(νx̂ `x) x ∈ ∂Ω. (4)
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Here

V H2
G (x) =

∫

Ω

G(x, y)H2(y)dy,
(
V H2
G

)′
(x) = TV H2

G (x). (5)

Let us define TV H2
G

(
TV H2

G = Ψ2

)
from (5)

TV H2
G (x) = Ψ2(x) =

1

cos(νx̂ `x)

[
∂H0(x)

∂`x
+H ′1(x)− g1(x)

]
∈ C(4,α1). (6)

For representation (2) let us apply the first boundary condition of problem (1)

v(x)− v(z(x)) +

∫

Ω

G(z(x), y)H1(y)dSy −
∫

Ω

G(z(x), y)V H2
G (y)dSy = f(x).

According to the definition of the operator T we have

∫

∂Ω

V H2
G (y)dy

|x− y| =

∫

∂Ω

Ψ2(y)dSy
|x− y| , x ∈ R3 − Ω,


v1(x) =

∫

Ω

V H2
G (y)dy

|x− y| , x ∈ Ω


 .

In order to find H2 let us pose the Dirichtet problem for the equation ∆3v1(x) = 0

(Ψ2 ∈ C(4,α1), UΨ2 ∈ C(5,α′1)

(Ω)
, α′1 < α1 < α)

v1(x) = UΨ2(x), x ∈ ∂Ω,

∂v1(x)

∂νx
=
∂UΨ2

` (x)

∂νx
, x ∈ ∂Ω,

∂2v1(x)

∂ν2
x

=
∂2UΨ2

` (x)

∂ν2
x

, x ∈ ∂Ω.

It is well-known that there exists a solution v1 to the Dirichlet problem belonging
to the class C(5,β)(Ω), 0 < α′ < β < α′1 < α1 < α. The equality ∆2v1(x) = H2(x)
implies that H2 ∈ C(1,β)(Ω). From here and (4) by virtue of (6) we get the second kind
Fredholm integral equation

ϕ−Kϕ = g, (7)

where K is a compact operator from the space C(5,α′) into the space C(5,α′); the right-
hand-side belongs C(5,α′) and depends on g1, g2 and f only.

It is not difficult to make sure that the null-space of the operator A, Aϕ = ϕ−Kϕ is
one-dimensional. By virtue of the Reisz-Shauder theory, the null-space of the operator
A∗ = I∗ −K∗ mapping {C(5,α′)}∗ into itself is also one-dimensional. Therefore, there
exists a unique functional Φ1 ∈ {C(5,α′)}∗ which is an eigenvalue of a dual compact
operator K∗, i.e. K∗Φ1 = Φ1. Let us define the following space with elements from
C(5,α′)(∂Ω)

B1 = {g : g ∈ C(5,α′), Φ1(g) = 0}.
According to the Reisz-Shauder theory, the equation (7) is solvable if and only if g ∈ B1.
This implies the solvability of problem 1, if the right-hand-side of (7) belongs to B1.
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