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THE STEADY MHD-FLOW OF A LOW CONDUCTIVE FLUID IN THE
NEIGHBOURHOOD OF AN INFINITE POROUS PLATE AT SIMULTANEOUS
ROTATION OF A PLATE AND FLUID WITH STRONG MAGNETIC FIELD

Jikidze L., Tsutskiridze V.

Georgian Technical University

Abstract. There has been studied the steady MHD-flow of a conductive fluid at simultaneous
rotation of a infinite porous plate and fluid near it with strong magnetic field for large values
of injection velocity by means of the method of the consistent approximation, with the Green
function and small parameter

The physical characteristics of fluid motion with respect to small parameter, there are
represented by infinite series. There is given recurrent correlations with arbitrary precision.
The first two approximations are found explicitly. There is calculated the resistance moment
against rotation of plate.
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In paper [1] it has been studied a stationary problem of the rotatory motion of
conductive fluid on a fixed disk with magnetic field.

In paper [2] it has been investigated the motion of rotating porous plate in a low
conductive fluid with weak magnetic field, taking into account heat-transfer.

In the present paper, by the method of succesive approximations, using the Green
function and small parameter, it is studied the steady MHD-flow of a flow conductive
fluid near an infinite porous plate at simultaneous rotation of a plate and fluid with
different angular velocities, taking into account strong magnetic field and large values
of injection velocity.

In this case the system of differential equations of the steady motion of conductive
fluid with corresponding boundary conditions has the form


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


z = 0, vr = 0, vϕ = ω1r, vz = −vw ,

z =∞, vr = 0, vϕ = ω2r,
(2)
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where ∆ =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
, while ω1 and ω2 are angular velocities of rotation of a

plate and fluid, respectively.
Due to geometric and mechanic considerations we seek a solution of the problem in

the form 


vr = ω0rf(ξ), vϕ = ω0rq(ξ), vz =

√
νω0 [g(ξ)− vw ],

z =
√
ν/ω0 ξ, vw =

√
νω0 vw , P = −ρνω0P

′(ξ).
(3)

If we introduce additionally variable η = vwξ, then by (3) from system (1)-(2) we
receive the following system of equations and boundary conditions:





f ′′ + f ′ − k2f = ε(gf ′) + ε2(f 2 − q2 + ω2
2),

q′′ + q′ − k2q = ε(gq′) + ε2(2fq),

εP ′ = −g′′ + ε(gg′)− g′,

g′ = −ε(2f),

(4)




η = 0, f = 0, q = ω1, g = 0,

η =∞, f = 0, q = ω2,
(5)

where ε = 1
vw

, m2 =
σB2

0

ρω0
, k2 = m2

v2
w

.

The solution of problem (4)-(5), by use the Green function, can be reduced to the
solution of the system of integral-differential equations





f =
∞∫
0

[ε(gf ′) + ε2(f 2 − q2 + ω2
2)]G(η, ζ)dζ,

q =
∞∫
0

[ε(gq′) + ε2(2fq)]G(η, ζ)dζ,

g = −ε
η∫
0

(2f)dζ,

(6)

where G(η, ζ) is the Green function of problem

G′′ +G′ − k2G = 0,

G|η=0 = 0, G|η=∞ = 0.

It has the form

G =





G1 =
e−nη − e(n−1)η

2n− 1
e−(n−1)ζ , 0 ≤ η < ζ,

G2 =
e−(n−1)ζ − enζ

2n− 1
e−nη, ζ ≤ η <∞,

where n =

√
1 + 4k2 + 1

2
.
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Let us search a solution of system (6) in the form of series with respect to small
parameter ε:

f =
∞∑
i=0

ε4i+2fi, q =
∞∑
i=0

ε4iqi, g =
∞∑
i=0

ε4i+3gi (7)

Introducing series (7) into system (6) and equating the coefficients of the same
degrees of ε, we receive the following recurrence relations:
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∫ ∞
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2)G(η, ζ)dζ,
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∫ ∞
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q
j

=

∫ ∞
0
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)

]
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g
j

=− 2

∫ η

0

fjdζ, (j ≥ 0),

where A(η) is the solution of the problem

A′′(η) + A′(η)− k2A(η) = 0,

A(0) = ω1 − ω2, A(∞) = 0.

The first two approximations f0, f1, q0, q1, g0, g1 have the form:

f0 =
2ω2(ω1 − ω2)

2n− 1
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2
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4
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η
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q1 =− 2ω2
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+
2ω2(ω1 − ω2)2(8n− 3)

n(2n− 1)2(3n− 1)

[2n− 1

3n− 1
(e−nη − e−2nη)− ηe−nη

]

+
(ω1 − ω2)3

n(2n− 1)(3n− 1)

[ 2n− 1

2n(4n− 1)
(e−nη − e−3nη)− ηe−nη

]
,

g1 =− (ω1 − ω2)4
[ (2n− 1)2A1

2n(4n− 1)(5n− 1)
(e−4nη − 4e−nη + 3)

−2(A2 + A3)ω2 − 2A3ω1

3n(ω1 − ω2)
(e−3nη − 3e−nη + 2)

+
A8

n(ω1 − ω2)2
(e−nη − 1)2

]
+ (ω1 − ω2)3

×
[ 2ω2

9n4(2n− 1)(4n− 1)
(3nηe−3nη + e−3nη − 1)

+
A1A9

n2(ω1 − ω2)
(2nηe−2nη + e−2nη − 1)

− 2A10

n2(ω1 − ω2)
(nηe−nη + e−nη − 1)

]
− 2ω3

2(ω1 − ω2)

×
[ 4

3n4(3n− 1)3
(n3η3e−nη + 3n2η2e−nη + 6nηe−nη − 6)

+
2(ω1 − ω2)A11

n3ω2
2

(n2η2e−nη + 2nηe−nη + 2e−nη − 2)

+
8

n(2n− 1)5
(e−nη − 1)

]
,

where we use the following notations:

A1 =
1

n2(3n− 1)2(2n− 1)2
,

A2 =
(16n2 + 3n− 3)(4n− 1) + 2(5n− 1)(3n− 1)

n(4n− 1)2
(2n− 1)A1,

A3 =
3(2n− 1)2

2n(4n− 1)
A1,

A4 =− 4n(8n− 3)(2n− 1)2 + 8(3n− 1)(2n2 − 4n+ 1)

n(2n− 1)(3n− 1)
A1,

A5 =
2(16n2 + 3n− 3)(2n− 1)− 2(16n− 3)(3n− 1)

n(3n− 1)
A1,

A6 =
(2n2 + 7n− 2)(2n− 1)

n(3n− 1)(4n− 1)
A1,

A7 =
4(14n− 5)

n(3n− 1)(2n− 1)3
− 4n(8n− 3)(2n− 1) + 8(3n− 1)2

2n− 1
A1,

A8 =ω2
2A4 + ω2(ω1 − ω2)A5 − (ω1 − ω2)2A6,

A9 =
4n(3n− 1)ω2

2

2n− 1
+ 4(3n− 1)ω2(ω1 − ω2) + (2n− 1)(ω1 − ω2)2,
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A10 =ω2
2A7 + (ω1 − ω2)2(2n− 1)A1

+
ω2(ω1 − ω2)(28n2 − 12n+ 1)

(2n− 1)(4n− 1)
(3n− 1)A1,

A11 =
2n(14n− 5)(3n− 1)A1

2n− 1
ω2(ω1 − ω2)

+
4ω2

2

(2n− 1)4
+ n(3n− 1)(ω1 − ω2)2A1.

The obtained solutions are valid for an infinite plate. However, for sufficiently large
radius R, we can neglect the influence of an edge and calculate the value of a moment
M of forces resistant to the rotation:

M =
πµ
√
ω3

0vwR
4(ω1 − ω2)

2
√
ν

{
n+

2ε4

2n− 1

[ 2ω2
2

(2n− 1)2

−ω2(ω1 − ω2)2(8n− 3)(2n2 − 4n+ 1)

n(2n− 1)(3n− 1)
+

(ω1 − ω2)2

(3n− 1)(4n− 1)

]}
.

From solutions obtained above it is clear that the influence of injection velocity,
magnetic interaction and angular velocities of the rotation of a plate and fluid on the
physical characteristics of a flow.
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