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Abstract. A nonlocal boundary value problem for a fourth-order ordinary differential equa-
tion is considered. Variational formulation of the problem is studied. The minimization of
this functional gives a solution of the problem.
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In [1] Bitsadze and Samarskii studied new mathematical problems with nonlocal
boundary conditions. Numerous scientific works (e.g., see [2-16]) deal with the analysis
of the problems considered in [1] and some of their generalizations. In these papers,
attention was mainly paid to the existence and uniqueness of solutions and to issues
related to the approximate solution of nonlocal boundary value problems.

The aim of the present paper is to analyze a nonlocal boundary value problem for an
ordinary fourth-order differential equation in the variational setting. Some attempts in
this direction were made in [14, 16], where a variational interpretation of some nonlocal
boundary value problems for second-order differential equations was given.

In the present note to ensure the positive definiteness of the operator of the nonlocal
boundary value problem to be considered. We introduce a special inner product, define
a symmetric extension of functions, and construct an appropriate linear manifold.

Let us consider the nonlocal boundary value problem:

Au(x) ≡ (k1 (x) u′′ (x))
′′ − (k2 (x) u′ (x))

′
+ k3 (x)u (x) = f (x) , x ∈ ]−a, 0[ , (1)

u (−a) = 0, u′ (−a) = 0, u′ (0) = 0, (2)

0∫

−ξ

k2 (x)u′ (x) dx− k1 (0) u′′ (0) + k1 (−ξ) u′′ (−ξ) = 0, (3)

where f (x) , k3 (x) ∈ C [−a, 0], k1 (x) ∈ C(2) [−a, 0], k2 (x) ∈ C(1) [−a, 0]; k1 (x) ≥
K1 = Const > 0, k2 (x) , k3 (x) ≥ 0, and k3 (x) ≡ 0 for x ∈ [−ξ, 0], here ξ is a given
point in the interval ]0, a[.

Note that the boundary condition (3) with k2(x) ≡ 0 and k1(x) ≡ Const > 0
includes the boundary condition of Bitsadze-Samarskii type.
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Let u(x) be a solution of problem (1)-(3) in the class C(4) ]−a, 0[ ∩ C(2) [−a, 0].
Throughout the paper, we use the ordinary spaces Ck, which consist of k times contin-
uously differentiable functions, as well as the space L2 of square integrable functions
and the Sobolev space W 2

2 .
By D [−a, 0] we denote the linear manifold of all real functions v(x) defined almost

everywhere on [−a, 0[, having a finite boundary value v (0) ∈ R and satisfying the
inclusion v (x) ∈ L2 [−a, 0].

Note that, to specify a function v(x) ∈ D [−a, 0], one should essentially specify the
pair (v (x) , v (0)) (x ∈ [−a, 0[). The functions v1 (x) and v2 (x) coincide as elements of
the linear manifold D [−a, 0] if v1 (x) = v2 (x) almost everywhere on [−a, 0[ v1 (0) =
v2 (0).

Throughout the following, for each continuous function v(x) defined on the interval
[−a, 0], the corresponding element (pair) of the linear manifold D [−a, 0] is defined to
be the pair formed by the restrictions of v(x) to the sets [−a, 0[ and {0}, respectively.

On the lineal D [−a, 0], we define the operator τ of symmetric extension as follows:

τv (x) =

{
v (x) for x ∈ [−a, 0] ,
−v (−x) + 2v (0) for x ∈ ]0, ξ] .

Note that τ takes each function v(x) ∈ D [−a, 0] to a function ṽ (x) = τv (x)
defined almost everywhere on [−a, ξ] such that the function ṽ (x)−v (0) is even almost
everywhere on [−ξ, ξ].

For two arbitrary functions v (x), w (x) ∈ D [−a, 0], we define the inner product

[v, w] =

ξ∫

−ξ

x∫

−a

ṽ (s) w̃ (s) dsdx. (4)

The inner product (4) makes the linear manifold D[−a, 0] a pre-Hilbert space. We
denote this space by H [−a, 0] and introduce the norm

‖v‖
H

=




ξ∫

−ξ

x∫

−a

ṽ2 (s) dsdx




1/2

corresponding to the inner product (4).
In addition, we introduce the norm

‖v‖ =
(‖v‖2

L2
+ v2 (0)

)1/2
, (5)

on D [−a, 0], where

‖v‖2
L2

=

0∫

−a

v2 (x) dx.

Following statements are true.
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Theorem 1. The norm ‖·‖ given by (5) is equivalent to the norm ‖·‖
H

.
Remark 1. It follows from Theorem 1 that H [−a, 0] is a Hilbert space.
Suppose that the domain of the operator A is the linear manifold DA [−a, 0] that

consists of the functions v (x) ∈ H [−a, 0] satisfying the conditions:

v (x) ∈ C(4) [−a, 0] , v(i) (0) = 0, i = 1, 4, v (−a) = 0, v′ (−a) = 0,

k1 (−ξ) v′′ (−ξ) +

0∫

−ξ

k2 (x) v′ (x) dx = 0.

Theorem 2. The linear manifold DA [−a, 0] is dense in the space H [−a, 0].
Thus, the operator A maps the linear manifold DA [−a, 0] dense in the Hilbert

space H [−a, 0] into the same space H [−a, 0].
Theorem 3. The operator A is symmetric and positive definite on DA [−a, 0].
We have thereby obtained a standard situation: A is a positive definite operator

on the linear manifold DA [−a, 0], which is dense in the Hilbert space H [−a, 0]. We
follow the well-known scheme [17]. On the lineal DA [−a, 0], we introduce the new
inner product

[v, w]A = [Av, w]

=

ξ∫

−ξ

x∫

−a

[
k̄1(s)ṽ′′(s)w̃′′(s) + k̄2(s)ṽ′(s)w̃′(s) + k̄3(s)ṽ(s) w̃(s)

]
dsdx (6)

and the corresponding norm

‖v‖A =





ξ∫

−ξ

x∫

−a

[
k̄1(s) (ṽ′′(s))2

+ k̄2(s) (ṽ′(s))2
+ k̄3(s)ṽ2(s)

]
dsdx





1/2

. (7)

The inner product (6) makes DA [−a, 0] a pre-Hilbert space. Consider the comple-
tion HA [−a, 0] of this space in the norm (7). One can readily see that the norm (7) is
equivalent to the norm of the space W 2

2 [−a, 0]. The space HA [−a, 0] consists of the
elements of W 2

2 [−a, 0] satisfying condition (2).
Let α ∈ R. Consider the pair (f (x) , α). It determines a unique element fα (x) of

the space H [−a, 0]. For each such element, there exists a unique function uα (x) ∈
HA [−a, 0] minimizing the functional

Fα (v) = [v, v]A − 2 [fα, v] . (8)

The function uα(x) satisfies the identity

[uα, v]A = [fα, v]

for arbitrary v (x) ∈ HA [−a, 0].
One can readily see that

uα (x) = u0 (x) + αz (x) , (9)
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where z(x) minimizes the functional (8) for the case in which the first component of
the pair (f (x) , α) is the zero function on [−a, 0[, and α = 1.

Let us show that we obtain a solution of problem (1)-(3) from the one-parameter
family (9) for α = 0.

For α = 0, the functional (8) has the form

F0 (v) = 2ξ

0∫

−a

[
k1(x) (v′′(x))

2
+ k2(x) (v′(x))

2
+ k3(x) v2(x)− 2f(x) v(x)

]
dx

+4v (0)

0∫

−ξ

0∫

x

f(s)dsdx. (10)

Let us find the variation of the functional (10) on a solution u(x) of problem (1)-(3).
After some transformations we have

δF0 (u) =
d

dt
F0 (u+ tv)

∣∣∣∣
t=0

= 4ξ

0∫

−a

[k1(x)u′′(x) v′′(x) + k2(x)u′(x) v′(x)

+k3(x)u(x) v(x) − f(x) v(x)] dx+ 4v (0)

0∫

−ξ

0∫

x

f(s)dsdx

= −4ξ (k1u
′′)′ (0) v (0) + 4ξv (0) (k1u

′′)′ (0)

+4v (0)


k1 (−ξ)u′′ (−ξ)− k1 (0) u′′ (0) +

0∫

−ξ

k2 (x)u′ (x) dx


 = 0.

Therefore, the functional (10) attains its minimum on the solution u(x) of problem
(1)-(3).

Remark 2. For the minimizing function u(x) of the functional F0(v), we have

δF0(u) = 4ξ

0∫

−a

[k1(x)u′′(x)v′′(x) + k2(x)u′(x)v′(x) + k3(x)u(x)v(x)− f(x)v(x)]dx

+4v(0)

0∫

−ξ

0∫

x

f(s)dsdx = 0, ∀v(x) ∈ HA[−a, 0].

In particular, the relation

0∫

−a

[k1(x)u′′(x)v′′(x) + k2(x)u′(x)v′(x) + k3(x)u(x)v(x)− f(x)v(x)]dx = 0
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holds for an arbitrary infinitely differentiable compactly supported function v(x). It
follows that u(x) is a weak solution of equation (1). For an appropriate smoothness
of the input data of equation (1), one can also obtain the desired inclusion u(x) ∈
C4]− a, 0[∩C2[−a, 0] (e.g., see [17]).
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