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Abstract. The two-dimensional system of nonlinear partial differential equations is consid-
ered. This system arises in process of vein formation in meristematic tissues of young leaves.
Decomposition and variable directions finite difference schemes are studied. Convergence of
these schemes are given.
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Nonlinear systems of partial differential equations describing various processes of
diffusion were and are nowadays objects of researching for many scientists. Establishing
of qualitative and structural characteristics of initial-boundary value problems of these
systems, constructing of discrete analogues and investigation of numerical algorithms
are actual and quickly developing parts of modern mathematics.

The main features of many of such systems are expressed in fact that they contain
equations of different kinds, which are strongly connected to each other. Mentioned
condition for each concrete system determines the use of respective methods of research,
because general theory is incompletely developed for such systems even in linear case.
Naturally arises the questions of approximate solution of these problems which also are
connected with serious complexities as well.

The considered model is connected with process of vein formation in meristematic
tissues of young leaves. Mentioned model has the following form [1]:
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Here f and g are given sufficiently smooth functions of their arguments, which satisfy
the following conditions: 0 < d ≤ f (r) ≤ D, 0 < d ≤ g (s) ≤ D, |f ′(r)| < D,
|g′(s)| < D, where d and D are constants.

The essential difficulties arise in the process of constructing, investigating and re-
alizing the numerical algorithms for model (1). Besides nonlinearity the complexity
of studying such problems are conditioned also by its two-dimensionality. Therefore,
naturally arises the question of reduction this problem to easier ones. In particular, it
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is very important to reduce the two-dimensional problem to the set of one-dimensional
problems.

In [1],[2] some qualitative and structural properties of solutions of the boundary-
value problems for the system (1) are established. In [2] investigations are carried
out for one-dimensional case. The large theoretical and practical importance of the
investigation and numerical solution of the initial-boundary value problems for the
systems of type (1) is pointed out in [1],[2].

The modern computational techniques give the possibility for the direct numerical
solution of the multi-dimensional problems of mathematical physics, but the corre-
sponding algorithms are non-economical and difficult for realization. Therefore arises
the question of constructing the economical algorithms for solution of multi-dimensional
problems requiring arithmetical operations directly proportional to the number of the
space grid points for passage from one time level to next one.

Beginning from the basic works [3],[4] in which the scheme of variable directions
were suggested, the methods of constructing of effective algorithms for the numerical
solution of the multi-dimensional problems of mathematical physics and the sphere
of problems solvable with the help of these algorithms were essentially extended. At
present there are some effective algorithms for solving the multi-dimensional problems
(see, for example, [5]-[7]). These algorithms mainly belong to the methods of splitting-
up or sum-approximation according to their approximate properties. In [8] the new
difference schemes belonging to the class of algorithms of variable directions are given.

In the present note one kind of such a scheme for the system (1) is given. We should
note that some questions of the convergence of such type scheme as well as average
model of sum approximation for the system (1) are discussed in the papers [9]-[11].
The convergence of the difference scheme for one-dimensional analogue of the system
is studied in [11].

In the parallelepiped Q = [0, 1]× [0, 1]× [0, T ], where T is a given positive constant,
consider the system (1) with following boundary and initial conditions:

U(x, 0, t) = U(x, 1, t) = U(0, y, t) = U(1, y, t) = 0, (2)

U(x, y, 0) = U0(x, y), V (x, y, 0) = V0(x, y), W0(x, y, 0) = W0(x, y). (3)

Let us assume that U0, V0 and W0 are given sufficiently smooth functions, such
that U0(x, y) ≥ d, V0(x, y) ≥ d, W0(x, y) ≥ d. Suppose that all necessary consistence
conditions are satisfied and there exists the sufficiently smooth solution of the problem
(1)-(3). It should be noted that the uniqueness of the solution of the problem (1)-(3)
is studied in [10].

Under the conditions on functions f and U0 from the second equation of the system
(1) we have
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Analogically we prove the upper boundedness of the function V and similar facts
for the function W , i.e.

V (x, y, t) < C, c < W (x, y, t) < C, (5)

where c and C are positive constants. At last using again restrictions on f, g, V0,W0,
second equation of the system (1) and estimations (4),(5) it is not difficult to get
inequalities:
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Later we shall follow notations from [6]. Introduce on the domain Q the grids:

ω̄hτ = ω̄h × ω̄h × ωτ ,

ω̄1hτ = ω̄1h × ωτ ,
ω̄2hτ = ω̄2h × ωτ ,

where
ω̄h = {(xi, yj) = (ih, jh), i, j = 0, ...,M, Mh = 1},

ω̄1h = {(xi, yj) = ((i− 1/2)h, jh), i, j = 1, ...,M , Mh = 1} ,
ω̄2h = {(xi, yj) = (ih, (j − 1/2)h), i, j = 1, ...,M , Mh = 1} ,

ωτ = {tk = kτ, k = 0, 1, ..., K, Kτ = T} ,

ukx =
uki+1 − uki

h
, ukx̄ =

uki − uki−1

h
, ut =

uk+1
i − uki
τ

.

Let us correspond to problem (1)-(3) following decomposition finite difference
scheme:

uk+1
1 − uk1
τ

= σ1(vk+1uk+1
1x̄ )x + (1− σ1)(vkuk1x̄)x,

vk+1 − vk
τ

= −vk+1 + f(vkuk1x̄), (6)

u1(xi, yj, tk) = u2 (xi, yj, tk+1) , u1(xi, yj, 0) = U0 (xi, yj) ,

(xi, yj) ∈ $h, v(xi, yj, 0) = V0(x, y), (xi, yj) ∈ $1h,

u1(0, yj, tk+1) = 0, u1(1, yj, tk+1) = 0, j = 0, 1, ...,M, k = 0, 1, ..., K − 1;

uk+1
2 − uk2
τ

= σ2(wk+1uk+1
2ȳ )y + (1− σ2)(wkuk2ȳ)y,
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wk+1 − wk
τ

= −wk+1 + g(wkuk2ȳ), (7)

u2(xi, yj, tk) = u1 (xi, yj, tk+1) , (xi, yj) ∈ $h, w(xi, yj, 0) = W0(x, y), (xi, yj) ∈ $2h,

u2(xi, 0, tk+1) = 0, u1(xi, 1, tk+1) = 0, i = 0, 1, ...,M, k = 0, 1, ..., K − 1.

Here σ1, σ2 ∈ ]0; 1]; functions u1, u2 are defined on ω̄hτ ; v, w - on $1hτ and $2hτ

respectively.
Let us correspond to the problem (1)-(3) following scheme of variable directions:
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u1(xi, yj, tk) = u2 (xi, yj, tk+1) , u1(xi, yj, 0) = U0 (xi, yj) ,

(xi, yj) ∈ $h, v(xi, yj, 0) = V0(x, y), (xi, yj) ∈ $1h,

u1(0, yj, tk+1) = 0, u1(1, yj, tk+1) = 0, j = 0, 1, ...,M, k = 0, 1, ..., K − 1;

uk+1
2 − uk2
τ

= (vk+1uk+1
1x̄ )x + (wk+1uk+1

2ȳ )y,

wk+1 − wk
τ

= −wk+1 + g(wkuk2ȳ),

(9)

u2(xi, yj, tk) = u1 (xi, yj, tk+1) , (xi, yj) ∈ $h, w(xi, yj, 0) = W0(x, y), (xi, yj) ∈ $2h,

u2(xi, 0, tk+1) = 0, u1(xi, 1, tk+1) = 0, i = 0, 1, ...,M, k = 0, 1, ..., K − 1.

Under the sufficiently smoothness of exact solution of the problem (1)-(3) the dif-
ference schemes (6), (7) and (8), (9) approximate the problem (1)-(3) with the rate
O(τ + h2). The following statements take place:

Theorem. The finite difference schemes (6), (7) and (8), (9) converge to the exact
solution of the problem (1)-(3) when τ → 0, h → 0 and for the errors Z1 = u1 − U ,
Z2 = u2 − U , S1 = v − V , S2 = w −W the following inequality holds

‖Z1‖$h + ‖Z2‖$h + ‖S1‖$1h
+ ‖S2‖$

2h
≤ C(τ + h2).

Remark. In Theorem C is a positive constant independent on τ and h, norms are
discrete analogous of the L2 norm.

Numerous numerical experiments are done which agree with theoretical conclusions.
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