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Abstract. A certain sufficient condition for the oscillation of proper solutions of the system
of third order linear system of differential equations with deviating arguments is established
in the present paper.
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Consider the linear system

{
x′i(t) = xi+1(βi+1t) (i = 1, 2, . . . n− 1),

x′n(t) = p(t)x1(β1t),
(1)

where p ∈ Lloc(R+;R), βi ∈]0; +∞[ (i = 1, 2, . . . n).

Definition 1. A continuous vector function

X = (Xi)
n
i=1 : [t0; +∞[→ Rn,

with t0 ∈ R+ is said to be a proper solution of the system (1) if it is locally absolutely
continuous on [t0; +∞[, almost everywhere on this interval the equality (1) is fulfilled,
and

sup{‖x(s)‖ : s ∈ [t; +∞[} > 0, for t ∈ [t0; +∞[.

Definition 2. A proper solution of the system (1) is said to be oscillatory if every
component of this solution has a sequence of zeroes tending to +∞. Otherwise the
solution is said to be non-oscillatory.

Definition 3. We say that the system (1) has the property A provided its every
proper solution is oscillatory if n is even, and lither is oscillatory or satisfies

|xi(t)| ↓ 0, for t ↑ +∞, (i = 1, 2, . . . n), (2)

if n is odd.
Definition 4. We say that the system (1) has the property B provided its every

proper solution either is oscillatory or satisfies either (2) or

|xi(t)| ↑ +∞, for t ↑ +∞, (i = 1, 2, . . . n), (3)

if n is even, and either is oscillatory or satisfies (3) if n is odd.
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Theorem 1. Let p ∈ Lloc(R+;R),

n∏
i=1

βi ≥ 1 (
n∏
i=1

βi ≤ 1)

and

limt→+∞t
∫ +∞

t

sn−2|p(s)|ds > (n− 1)!
n∏
i=2

βi−1
i ((n− 1)!

n−1∏
i=1

βi−ni ).

Then the system (1) has the property A.
Theorem 2. Let p ∈ Lloc(R+;R),

n∏
i=1

βi ≥ 1 (
n∏
i=1

βi ≤ 1)

and

limt→+∞
1

t

∫ +∞

0

sn|p(s)|ds > (n− 1)!
n∏
i=2

βi−1
i ((n− 1)!

n−1∏
i=1

βi−ni ).

Then the system (1) has the property A.
Theorem 3. Let p ∈ Lloc(R+;R+),

n∏
i=1

βi ≥ 1 (
n∏
i=1

βi ≤ 1).

Moreover, let

limt→+∞t
∫ +∞

t

sn−2|p(s)|ds > 2(n− 1)!
n∏
i=1

βi−2
i (2(n− 2)!

n∏
i=1

βi+1−n
i ),

if n is even and

limt→+∞t
∫ +∞

t

sn−2|p(s)|ds > (n− 1)!
n∏
i=2

βi−1
i ((n− 1)!

n∏
i=1

βi+1−n
i ),

if n is odd. Then the system (1) has the property B.
Theorem 4. Let p ∈ Lloc(R+;R+),

n∏
i=1

βi ≥ 1 (
n∏
i=1

βi ≤ 1).

Moreover, let

limt→+∞
1

t

∫ t

0

snp(s)ds > 2(n− 2)!
n∏
i=1

βi−2
i (2(n− 2)!

n∏
i=1

βi+1−n
i ),
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if n is even, and

limt→+∞
1

t

∫ t

0

snp(s)ds > (n− 1)!
n∏
i=2

βi−1
i ((n− 1)!

n∏
i=1

βi+1−n
i ),

if n is odd. Then the system (1) has the property B.
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