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OPTIMIZATION PROBLEM OF THE CYLINDRICAL COVERING OF THE
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Abstract. The work deals with the questions of optimal design of the cylindrical coverings of
the underground constructions by using the half-moment theory. Based on the known transi-
tion of the yield conditions of brittle-ductile materials, the solution to the problem is reduced
to a statically definable system. Provided the load on structure and mid-surface configuration
are given, the optimal thicknesses received through calculations ensure its minimum volume.
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The problem of optimal designing of the building structures, running at the margin
of a deformable solid body theory and optimal control theory, considers the issue of
a maximum planning efficiency of the study object. Selecting the optimality crite-
rion is the main problem of optimal design. When solving practical problems, they
mainly base themselves on such simple criteria, as the minimum weight (volume) of
the structure by preserving its strength, rigidity and stability.

Fig.1.(a) Design model of a cylindrical covering of an underground construction
(b) Protodyakonov’s scale to define vertical rock pressure.

The problem of minimization of the weight of the cylindrical covering of the un-
derground construction may be solved by optimization of either its mid-surface, or its
thickness, or both. The work gives the solution to the optimization problem of cover-
ing of the cylindrical constructions by selecting the thicknesses, which ensure full and
instantaneous transition of the construction to the plastic state by considering different
tensile and compressive strengths of the material (brittle-ductility).
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The length of the cylindrical coverings of the underground constructions usually
much exceeds its width in horizontal projection what along with the proper boundary
conditions, enables us to estimate its mode of deformation in fact with an acceptable
accuracy by using the theory of semi-flexible shells (Fig. 1, a) when the decisive system
of differential equations is as follows [1]:
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In case of a large working when the width B0 > 6m and the coefficient of rock
hardness fk > 4, the vertical rock pressure is taken as evenly distributed with q0

intensity, and its projections on the axes will be:

q1 = 0; q2 = q0 sinϕ, q3 = −q0 cosϕ. (2)

In more general cases when a vertical rock pressure acts on the covering, the hy-
drostatic pressure force of ground waters and the own gravity of the cupola (Fig. 1, b)
may be calculated from [2]:

q1 = 0; q2 = 0;

q3 = −γf (R cosϕ0 + hH −R cosϕ) + γ(h0 +R−R cosϕ) + γbh,
(3)

where γf , γ and γb are volume weights of the moutain rock, water and concrete, re-
spectively.

In case of a complex state of stress, in order to write down the equation of plastic
fluidity (strength), M. Mikeladze [1] when presenting the pressure components to the
mid-surface as paired and unpaired functions in the Stas strength condition for brittle-
ductile materials and after proper transitions, gains [1]:

T1 = 2T2 + (ρ− 1)σSh, (4)

(1− ρ)2σ2
Sh

4 + 6(1− ρ)T1σSh
3 − 3(T 2

1 + 4S2)h2 − 64M2
2 = 0, (5)

where σS and ρ σS are tensile strength and compression strength. A set of equations
(1) and (4) together with proper boundary conditions, as for the statically definable
system, enables us to define all unknown forces and torques (T1, T2, S,N2,M2). Un-
known thicknesses of covering, which ensure the equal danger of the different points
of its body to destruction, are determined by the equation of strength (fluidity) (5).
The section sizes of the covering defined by such an approach allow for designing the
construction of a practically minimum volume.
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By considering the relationship (4) in the first three equations of the system of
equilibrium equations (1) as a result of elimination of T1, S and N2, we gain the
decisive differential equation to T2 longitudinal force.
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If considering that the thickness of covering along axis x changes smoothly, we can
ignore the influence of (ρ − 1)σSR

2 ∂2h
∂x2 members what is equal to the assumption

ρ = 1and which we will use when specifying the boundary conditions. By considering
the above-mentioned, the decisive equation will be presented as follows:
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For circular edges of the covering with an articulated support, when x = ± `
2
, T1 = 0,

that is by considering (4) T2 = 1
2

(1 − ρ)σSh. If assuming that ρ = 1, then T2 = 0.
In order to meet these boundary conditions, let us present the solution to the decisive
equation and load on it with the aim of separation of the variables as follows:

T2(x, ϕ) = T2(ϕ) cos
π

`
x, q(ϕ) = q0(ϕ) cos

π

`
x. (7)

By considering (7), the decisive equation (6) will be presented as follows:
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+ ω2T2(ϕ) = −2q0R cosϕ, (8)

where ω2 = 2R2π2

`2
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The reference data of the function T2(ϕ) when ϕ = 0 will be:

T2(ϕ) = 0,
∂T2(ϕ)

∂ϕ
= 0. (9)

The first condition is the result of the study implying that the yaw rate along the
edge (ϕ = 0) due to the boundary state approaches infinity, and the appropriate normal
stress approaches zero [1]. The second condition follows from the second equation of
system (1) by considering that due to the symmetry of the covering and load, the
intersecting force N2(x, 0) along the edge and the external load component q2 = 0.
The shear force S equal to zero and its derivative ∂S

∂x

∣∣
ϕ=0

= 0.

Let us present the solution to the heterogeneous differential equation (8) as a sum
of a general solution to the homogenous equation and particular solution of the het-
erogeneous equation relevant of (8):

T2(ϕ) = C cosωϕ+D sinωϕ+
2q0T cosϕ

1− ω2
.

By considering the boundary condition (9), we will gain:

C =
2q0R

ω2 − 1
and D = 0.
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Then
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The intersecting force N2 is defined from equation (3) of system (1). Let us present
this force as follows:

N2(x, ϕ) = N2(ϕ) cos
π

`
x. (11)

The reference condition for function N2(ϕ) will be N2(0) = 0 determined by the sym-
metry of load and construction.

According to the reference condition, for integration function c(ϕ) we assume that
c(0) = 0 and then, according to (11), we will gain:

N2 =

[
2q0R

ω2 − 1

(
1

ω
sinωϕ− sinϕ

)
− q0R sinϕ

]
cos

π

`
x. (12)

We define the tangential force S from the first equation of system (1), where if equaling
∂h
∂x

to 0 and integration function, when ϕ = 0, we will gain:
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For defining the bending moment, we use the equation four of system (1), which if
presented by a single trigonometric series and after integration, will be presented as
follows:
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For determining the function of integration c(ϕ), we must assume that the value of the
bending moment M0 along the edge ϕ = 0 is known, i.e.
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When the longitudinal edges are rigidly fastened, then M2(0) = M0 and c(ϕ) = M0 −
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2, and when the longitudinal edges are fastened in an articulated manner,

then
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and
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Aiming at simplifying the numerical implementation of the problem the influence of
the shear force in expression (5) to define the optimal values of thickness is better to
ignore and by considering dependence (4), to present it as follows:
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The problem is better to solve by the method of gradual approximation. In the first
approximation, let us assume that ρ = 0 and let us ignore the weightiness of the con-
struction in the zero approximation. Let us determine forces and moments, etc. in the
first approximation by using the thicknesses gained as a result of such an assumption.
The calculation will be continued unless desirable accuracy is gained.

The methods of calculation is the same when force q acting on the covering is
defined by equation (3).
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