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ON ONE VARIANT OF AXISYMMETRIC NONLINEAR DEFORMATION OF
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Abstract. The nonlinear deformations of elastic spherical shells closed at a pole before and
after critical loads are considered. A system of differential equations for the solution of the
considered problem is obtained. A numerical solution of the system of differential equations
is realized in a particular example.
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Deformation of elastic spherical shells closed at a pole under supercritical load is
studied in this paper. Consideration of spherical shells closed at a pole brings us to
an equations system whose some coefficients become infinity at a pole. Application
of approximate analytic methods of solution to such class of problems is not always
advisable because of boundedness of domain of their use.

An approach to construction of solution with the help of numerical method is posed
in the paper. A stress-strain state of a spherical shell closed at a pole under exterior
pressure is investigated both in subcritical and supercritical domains.

Here we will consider deformation of elastic shells of revolution, where deformation
components are represented in quadratic variant of nonlinear elasticity theory [1].

A curvilinear coordinate system α, β, γ is related to a shell of revolution which coin-
cide with major curvature lines and exterior normal to median surface. We denote the
displacements along these axes by uα, uβ, uγ and the parameters Lame and curvature
radii of the median surface of the shell by A,B and R1, R2 respectively.

Further we will consider a class of shells for which hypothesis of Kirchhoff-Love are
valid, i.e.

ε13 = ε23 = ε33 = 0. (1)

According to [2], displacements of shell points can be written in the form:

uα = u(α, β) + γϑ1(α, β), uβ = v(α, β) + γϑ2(α, β), uγ = w(α, β), (2)

where u, v, w are displacements of the points of median surface of the shell; ϑ1, ϑ2 are
rotation angles of the normal to median surface of the shells in the planes β = const
and α = const respectively which are determined by equalities

ϑ1 = − 1

A

∂w

∂α
+

u

R1

, ϑ2 = − 1

B

∂w

∂β
+

v

R2

. (3)

Substituting (2) into the expressions of nonzero deformations ε11, ε22, ε33 [1], expending
them into powers of the variable γ and taking only by the first two terms, we can
represent them as:
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ε11 = E1 + γK1, ε22 = E2 + γK2, ε12 = Ω + 2γT, (4)

where

E1 = e11 +
1

2
(e2

12 + e2
13), E2 = e22 +

1

2
(e2

21 + e2
23),

Ω = e12 + e21 + e13e23, K1 = k11 + e12k12 + e13k13, (5)

K2 = k22 + e21k21 + e23k23, 2T = k12 + k21 + k13e23 + k23e13.

The values eij, kij in expressions (5) are determined by displacements of the median
surface u, v, w and rotation angles of the normal ϑ1, ϑ2 as follows:
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,
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, (6)
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.

Further we will consider axisymmetric deformation of shells of revolution. In a
concrete case for the shells of revolution we have: α = s, β = θ, where s is the length
of the meridian; θ is a central angle in the parallel circle. The Lame coefficients attain
the following values A = 1, B = r, where r is a distance between the considered point
of the coordinate plane and rotation axis. At axisymmetric deformation of shells of
revolution the values eij, kij have the following form:

e11 =
du

ds
+

w

R1

, e22 =
cosϕ

r
u+

sinϕ

r
w , e13 =

dw

ds
− u

R1

k11 =
dϑ1

ds
, k22 =

cosϕ

r
ϑ1, k13 = − ϑ1

R1

, (7)

e12 = e21 = e23 = k12 = k21 = k23 = 0,

where ϕ is an angle between the normal to coordinate surface and rotation axis.
According [2,3] we get elastic relations and equilibrium equations energetically.
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The elastic relations are as follows:

T1 =
Eh

1− ν2

[
E1 + νE2 +

h2

12
R∗(K1 + νK2)

]

T2 =
Eh

1− ν2

[
E2 + νE1 +

h2

12
R∗(K2 + νK2)

]
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Eh3

12(1− ν2)

[
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]

M2 =
Eh3
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[
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]
.

(8)

Here h is the thickness of the shell, E is Yung module, ν is Poisson coefficient, R∗ =
1

R1

+
1

R2

.

The equilibrium equations have the following form:

d(T
∗
1 r)

ds
− T ∗2

dr

ds
+ r

(
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∗
1
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+ q∗1

)
= 0,

d(N
∗
1 r)

ds
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(
T
∗
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T
∗
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− q∗3
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(9)
d(M

∗
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2
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ds
− r(T ∗1 −

M
∗
2

R2

)
ϑ1 − rN ∗1 = 0,

where

T
∗
1 = T1(1 + e22)−N1e13, T

∗
2 = T2(1 + e11),

N
∗
1 = N1(1 + e22)− T1e13, M

∗
1 = M1(1 + e22), M

∗
2 = M2(1 + e11), (10)

q∗1 = q1(1 + e11 + e22)− q3e13, q∗3 = q3(1 + e11 + e22) + q1e13.

The values T1, T2 involved in (8), (10) are normal tangential forces; N1 is a shearing
force; M1,M2 are bending moments; q1, q3 are the components of the surface load.

Starting from the initial relations we obtain a resolving equations system for ax-
isymmetric deformation of shells of revolution

dY

ds
= A(s)Y + F (s, Y ) + f(s), (11)

where Y = (T1, N1,M1, u, w, ϑ1)T , A(s) = ||aij|| is a matrix (i, j = 1, 2, . . . , 6),
F = (F1, F2, . . . , F6)T is a nonlinear vector function, f(s) = (f1, f2, . . . , f6)T is a vec-
tor. The elements of the matrix A(s) are determined by mechanical and geometrical
characteristics of the shells, and the components of the vector f(s) – by projections
of the surface load. The values by which the boundary conditions are formulated, are
considered as unknowns in equation (11).

As it was mentioned, some coefficients of system (11) turn into infinity at the pole
of the shells s = 0 and consequently its direct numerical integration is impossible.
Therefore similarly to [4], realizing a limit process, we find the limit values of the
coefficients of the resolving system at s→ 0.

At the pole of spherical shells system (11) gets the form
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dT1
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+
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)
, D1 =
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,
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12(1− ν2)
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.

As an example, a problem of deformation of spherical shells subjected to constant
exterior pressure q3 is considered, when the opened contour is rigidly clamped. In this
case the boundary conditions at the pole of the shells s = 0 have the following form

N1 = u = ϑ1 = 0,

and on the rigidly clamped contour s = sN they are as follows

u = w = ϑ1 = 0.

Numerical solution of the given boundary problem is realized with the help of the
method offered in [5]. It is based on adding one equation to the initial system of
differential equations, formulating a correct boundary problem for this system, using
linearization [6] and discrete-orthogonalization [7] methods.

Since the Cauchy problems for linearized equations systems are solved numerically
by the Runge-Kuta method, on the first step of calculations we use system (12) at
s = 0 and system (11) at other points. The numerical solution was carried out for the
following data: R = 100; h = 1; sN = 40; E = 105; ν = 0, 3.

A dependence of the deflection w at the pole of the shell on exterior pressure q3 is
given in the table

w -0,121 -0,151 -0,175 -0,192 -0,211 -0,228 -0,243 -0,250
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
q3 -9,5 -10 -10,5 -11 -11,5 -12 -12,5 -13,15
w -0,300 -0,500 -0,700 -0,900 -1,100 -1,200 -1,300 -1,400

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
q3 -12,62 -11,85 -11,45 -10,26 -10,05 -10,85 -11,63 -12,43

As it is clear from the table, the critical value of the exterior pressure equals q3 =
−13, 15.
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