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APPROXIMATION OF A LOCAL SOLUTION OF THE KIRCHHOFF
STRING EQUATION

Peradze J.

Iv. Javakhishvili Tbilisi State University

In 1883, G. Kirchhoff obtained the equation of string vibration

wtt(x, t)−
(

λ +
2

π

∫ π

0

w2
x(x, t)dx

)
wxx(x, t) = 0, 0 < x < π, 0 < t ≤ T. (1)

Here λ > 0 and T are the given constants. This equation is a particular case of
the equation which was for the first time investigated by S. Bernstein [1] in 1940.
In subsequent years, equation (1) and its various generalizations were studied in the
works of A. Arosio, J.Ball, M.Bőhm, G.Carrier, P.D’Ancona, R.Dickey, W.Newman,
K.Nishihara, S.Panizzi, S.Pohozaev, R.Rodriguez, S.Spagnolo and other authors. An
overwhelming majority of the works were concerned with finding solvability conditions,
while little attention was given to the construction of approximate algorithms and the
establishment of their accuracy. Besides the works of F. Attigui, S. Bilbao, L. Liu,
J. Peradze, M. Rincon, where this problem was to this extent or another touched
upon, we hardly know of any other papers published in this direction.

Let us consider equation (1) with the initial boundary conditions:

w(x, 0) = w0(x), wt(x, 0) = w1(x), w(0, t) = w(π, t) = 0, 0 ≤ x ≤ π, 0 ≤ t ≤ T. (2)

Let us assume that w0(x) and w1(x) are the given 2π−periodic functions of the form:

wl(x) =
∞∑
i=1

a
(l)
i sin ix, l = 0, 1,

|a(0)
i | ≤ Ω

ip+1.5
, |a(1)

i | ≤ Ω

ip+0.5
, i = 1, 2, . . . , p > 2, Ω > 0.

(3)

From [1] follows that if conditions (3) are fulfilled there exists a solution w(x, t) of
problem (1), (2) for T < T∗. Here

T∗ =



λ

1
2

∞∑
i=1

i


i2a

(0)2
i +

(
λ +

∞∑
j=1

j2a
(1)2
i

)−1

a
(1)2
i








−1

. (4)

Thus we have a local solution. An approximate solution will be sought as a series

wn(x, t) =
n∑

i=1

wni(t) sin ix, where the coefficients wni(t) are defined by the Galerkin

method from the system of nonlinear differential equations with the initial conditions:

w′′
ni(t) +

(
λ +

n∑
j=1

j2w2
nj(t)

)
i2wni(t) = 0, 0 < t ≤ T, (5)
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wni(0) = a
(0)
i , w′

ni(0) = a
(1)
i , i = 1, 2, . . . , n. (6)

We introduce the functions uni(t) = w′
ni(t), vni(t) = iwni(t), i = 1, 2, . . . , n, and

replace system (5),(6) by an equivalent system whose operator form is

u′n(t) + (λ + ||vn(t)||2n)Knvn(t) = 0, v′n(t) = Knun(t), 0 < t ≤ T, (7)

un(0) = a1
n, vn(0) = Kna

0
n. (8)

Here we use the notations un(t) = (uni(t))
n
i=1, vn(t) = (vni(t))

n
i=1, aj

n = (a
(j)
i )n

i=1,
j = 0, 1, Kn = diag(1, 2, . . . , n), while the norm || · ||n of a vector v ∈ Rn, v = (vi)

n
i=1, is

defined by the formula ||v||n =

(
n∑

i=1

v2
i

) 1
2

. Let us introduce some additional definitions.

We construct the block vector sn(t) = (un(t),vn(t)). Here and in what follows the sign
of transposition of the vectors is omitted. Besides, we introduce the block matrices An

and Bn(s), s = (u, v),

An =

(
0 −λKn

Kn 0

)
, Bn(s) =

(
0 −||v||2nKn

0 0

)

and the block vector an = (a1
n, Kna

0
n). Now we can write system (7), (8) in the form

s′n(t) = (An + Bn(sn(t)))sn(t), 0 < t ≤ T, (9)

sn(0) = an. (10)

We will solve problem (9), (10) by means of a difference scheme. On the time
interval [ 0, T ] we introduce the grid {tm|0 = t0 < t1 < · · · < tM = T} with a generally
variable step τm = tm− −tm−1, m = 1, 2, . . . ,M. An approximate value of sn(t) on the
mth time level, i.e. for t = tm, m = 0, 1, . . . , M, denoted by the vector sm

n = (um
n ,vm

n ),
um

n ,vm
n ∈ Rn, is found by a modification of the Crank-Nicolson scheme

sm
n − sm−1

n

τm

=

[
An +

1

2
(Bn(sm

n ) + Bn(sm−1
n ))

]
sm

n + sm−1
n

2
, m = 1, 2, . . . , M, (11)

s0
n = an. (12)

Let us consider the question of solving the system of nonlinear equations (11),(12).
Note that each equation of (11) contains the vectors sm−l

n , l = 0, 1, from two time
levels. It is assumed that the counting is performed levelwise, and one and the same
iteration process is realized on each mth level. In equation (11) the vector sm−1

n is
replaced by the vector sm−1,F

n = (um−1,F
n , vm−1,F

n ), um−1,F
n , vm−1,F

n ∈ Rn, which is the
final (F ) iteration approximation for sm−1

n obtained on the (m− 1)th level. Therefore
the vector sm

n cannot be found exactly. Instead of sm
n , the vector sm

n,R = (um
n,R,vm

n,R),
um

n,R,vm
n,R ∈ Rn, is a real (R) solution of the resulting equation. Thus the equation

sm
n,R − sm−1,F

n

τm

=

[
An +

1

2
(Bn(sm

n,R) + Bn(sm−1,F
n ))

]
sm

n,R + sm−1,F
n

2
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corresponds to the mth level, m > 1. Since starting from the second level, the same
situation takes place on every level, it is natural, in the latter equation to replace
sm−1,F

n by
sm−1,F

n,R = (um−1,F
n,R ,vm−1,F

n,R ), (13)

um−1,F
n,R ,vm−1,F

n,R ∈ Rn. As a result, for sm
n,R we have the equation

sm
n,R − sm−1,F

n,R

τm

=

[
An +

1

2
(Bn(sm

n,R) + Bn(sm−1,F
n,R ))

]
sm

n,R + sm−1,F
n,R

2
. (14)

Not to introduce a special equation for the case m = 1, it is assumed that (14)
is fulfilled for m = 1 as well, provided that s0,F

n,R implies s0
n. To solve the nonlinear

equation (14), we use a Picard type iteration process

sm,k
n,R = sm−1,F

n,R +
τm

2

[
An +

1

2
(Bn(sm,k−1

n,R ) + Bn(sm−1,F
n,R ))

]
(sm,k−1

n,R + sm−1,F
n,R ), (15)

where
sm,k−l

n,R = (um,k−l
n,R ,vm,k−l

n,R ), (16)

k = 1, 2 . . . . um,k−l
n,R , vm,k−l

n,R ∈ Rn, is the (k − l)th iteration approximation of the

vector sm
n,R, l = 0, 1, sm,0

n,R is the initial approximation on the mth level. Thus the

approximation to sn
m is performed by using vectors sm,k

n,R , k = 0, 1, . . . . Let us write the
iteration process (15) componentwise. To do so, first the vectors from (13) and (16)
are represented as um−1,F

n,R = (um−1,F
ni,R )n

i=1, vm−1,F
n,R = (vm−1,F

ni,R )n
i=1, um,k−l

n,R = (um,k−l
ni,R )n

i=1,

vm,k−l
n,R = (vm,k−l

ni,R )n
i=1. We obtain

um,k
ni,R = um−1,F

ni,R − τmi

2

{
λ+

1

2

[
n∑

j=1

(
(vm,k−1

nj,R )2 +(vm−1,F
nj,R )2

)]}
(vm,k−1

ni,R + vm−1,F
ni,R ),

vm,k
ni,R = vm−1,F

ni,R +
τmi

2
(um,k−1

ni,R + um−1,F
ni,R ),

(17)

m = 1, 2, . . . , M, k = 1, 2, . . . , i = 1, 2, . . . , n.

We calculate the components um,k
ni,R and vm,k

ni,R by formulas (17). Then, for chosen n

and for t = tm, the series
n∑

i=1

1

i
vm,k

ni,R sin ix, gives, at the kth iteration step, an approx-

imation value of the exact solution w(x, tm) of problem (1), (2). We can characterize

the error of the algorithm by ∆wm,k
n,R (x) = w(x, tm)−

n∑
i=1

1

i
vm,k

ni,R sin ix. Let us denote

ω0 =
[ 4

π

∫ π

0

(w1(x))2dx +
(
λ +

2

π

∫ π

0

(dw0

dx
(x)

)2

dx
)2] 1

2 − λ,

ωm−1,F
n,R =

[
2‖um−1,F

n,R ‖2
n + (λ + ‖vm−1,F

n,R ‖2
n)2

] 1
2 − λ,
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hm =
1

2

[
max(1, λ)‖sm,0

n,R + sm−1,F
n,R ‖n +

1

2
( ‖vm,0

n,R‖2
n + ‖vm−1,F

n,R ‖2
n)‖vm,0

n,R + vm−1,F
n,R ‖n

]
.

Let mF be the number of iterations performed on the mth level.
Theorem. Assume that conditions (3) are fulfilled, thereby ensuring the existence

of a local solution of problem (1), (2), i.e. of a solution for T < T∗, where T∗ is defined
by formula (4). Choose a value σ such that 0 < σ < 1. Assume that on each mth level,
m = 1, 2, . . . , m0, 1 ≤ m0 ≤ M, the parameter qm is such that 0 < qm < 1, and the
step τm satisfies the inequalities

τm <
2(1− σ)

n

(
max(1, λ) + 3 max(ω0, ωm−1,F

n,R )
)−1

,

τm ≤ 2qm

n

{
max(1, λ) +

1

3
‖vm−1,F

n,R ‖2
n +

3

2

[1

3
(ωm−1,F

n,R )
1
2 +

+ max (‖sm,0
n,R‖n, ‖sm−1,F

n,R ‖n + τmnhm) + ( ‖sm,0
n,R − sm−1,F

n,R ‖n + τmnhm)
qm

1− qm

]2 }−1

.

Then, with chosen n and t = tm0 , the total error of the algorithm at the kth iteration
step is estimated by

||∆wm0,k
n,R (x)||L2(0,π) ≤

2∑

l=1

C2l−1

(
1

np

)3−l

+ C2e
γn max

1≤m≤m0

τ 2
m +

m0−1∑
m=1

DmqmF
m + Dm0q

k
m0

,

where Cl, Dm, l = 1, 2, 3, m = 1, 2, . . . , m0, and γ are the constants independent of n,
τm and k.

The case of a global solution is studied in [2].
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