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ON THE CAUCHY INTEGRALS TAKEN OVER THE INFINITE LINE
Khatiashvili N.

Iv. Javakhishvili Thilisi State University

In this work the Cauchy integrals taken over the doubly-periodic line are defined
and the inversion formula for this types of integrals is obtained.

In a complex z-plane C', z = x + iy, consider two complex numbers w; and wy,
(Imi‘j—f > 0) and the doubly-periodic line L which is a union of a countable number of
smooth non-intersected contours L : j = 1,2 --- .k, m,n = 0,41, 42, ..., doubly-
periodically distributed with periods 2w; and 2iw, in the whole z-plane

L= U Lmna
m,n:k—oo‘ | . (]-)
Lypn = ULimw L%nm[’fm:®7 jl?éjQ’ Jij2a=1,2,... . k.
=1

z-plane cut along L we denote by S. '
Let ¢(t) be a doubly-periodic function given on L of Muskhelishvili H* class on L,

[1] and consider the integral
o(t) dt
]2 @)

t— =z

which is understood as the following series

t) dt > t) dt

In the work [2] of the author the following theorem was proved.
Theorem 1. The series (3) is convergent if and only if ¢(t) satisfies the conditions

/ o(t)dt =0, / to(t)dt =0,
Loo LOO

and the integral (1) is given by the formula

Loy L[ o2

2 Jpt— 2z 270 J

where ¢ 1s the Weierstrass (-function.
In the work the following equation is considered

L/M:Jt(to), to € L, (4)

e Lt_to
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with the conditions

/L (t)dt =0, /L tp(t)dt =0, (5)

where L is the doubly-periodic line, f(¢) is the given doubly-periodic function of H
class on every Loy, m,n = 0,£1,£2,...), ¢(f) is unknown doubly-periodic function
which is assumed to belong to the Muskhelishvili class H*.

The solution of the problem we will find in the Muskhelishvili-Kveselava classes.

By h, is denoted the class of solutions of the equation (4) Holder continuous on L
and bounded at the ends ¢y, co,. .., ¢, of the line L (¢ < 2k), and at the other ends
Cqt1, - - -, Cox, the solution becomes infinite with the degree less then 1 [1].

Applying the results from [2] we conclude

1) In the case ¢ — k < 0 the solution of the equation (4) of the class h, exists if and
only if

/L f(t)dt =0 (6)

and is given by

olto) =288 [ Lot t0)+ Glta - e

+2 Cl\Da(tO) -+ 2 CQ\Ilo(to), t[) € Loo,

where
o(to—aq)---o(to—k—gt1) [o(to—c1)o(to—c2)--- oty — ¢4)
Wo(to) = )
o(to — B1) o(to — cq1) - - o(to — car)
. o(to—aj)---o(to—ap_,.1)
W5(to) = - LW (t),
O'(t(] — Oél) tee O'(t(] — ak—q—l—l)
the constants Cy,Ca, b1, 00, .., Qg—gi1, 05, ..., Q) are connected with the condi-
tions

200+ e+ .o+ =200+ ...+ 205 g1+ 01+ .. FC,
t ot Qg1 =0 Qs
Pr,aj0; € L, j=1,2,....k—q+1,
Ui (C1U*(61) + Co)+

Uy fo(t) _
2mi . \Ifar(t) [C(t - 51) = (a1 = ﬁl)] dt =0,

/ toWo(to) f(t)

u Loo \IJS_ (t)

[C(t —to) + ((to — au)] dt dto+

+2 Cl / to\I/Z;(to) dto + 2 CQ / ‘I’o(to) dto = 0,
Loo L

00
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o(fr—ai)-o(B— ag_gi1)
U(ﬁ1 - 061) T 0(51 - Oéqu+1)

2) In the case k — q = 0 the solution of the equation (4) of the class hy exists and
15 given by

‘I’*(ﬁl) =

y \Ijl = reS‘Po(ﬁl).

Wo(to) fo(t)

p(to) = :
( 0) (U Loo ‘ljg_(t)

[C(t — to) + C(to — )] dt+

+2 01\118(750) + 2 OQ‘IJO(tO), t() € Lgo,

where

Uy (ko) oty —ay) oty — ay) \/Ua(to — )0ty — ¢)

- o(to — ) o(to — Ba) (to — cqu1) -0 (to — cox) '

oty — o) o(to — ab)

U(to - Oél) O'(to - OQ)

W5(to) = Wy (to),

fo(to) = f(to) — 2AC(to — B1) + 2AC(to — B2), to € Loo,
2ﬁ1+2ﬁ2+0q+1—|—...+02k:2a1+2a2+cl+...+cq,

* *, *
o+ =ay+ay; B a0 €L,

24 / Clto— B1) — Clto— Bo)ldt = [ F(t) dt,

\Ifl(cl\D*(ﬁ1> + CQ) ==
[C(t=51) =l =B)|[C(t=B1) = (a1 = 1)
==/ 0 #)-

o S
“2mi ), TSt O ol = Al dt

1 1 . .
A+ ;) = G (3) = (5),
. o(B; —ay)o(B; — a3
\I’(ﬁ]): (J_ 1)(]‘_ 2)7
o(B; — 1) o(B; — az)
3) In the case ¢ — k > 0 the solution of the equation (4) of the class h, exists if and
only if the condition (6) is fulfilled and is given by

_ Wo(to) f(t)
T Loo \D(J)r(t)

\I’] = I'eS\Ilo(ﬁj), J = 1,2

¢(to)

[C(t = o) + C(to — an)] di+

—|—20\I’0(t0), ty € Loo,

where

o (2) o(z—aq) \/ o(z—c1)--o(z—cy)

To(z=B1) oz = Brn) | o(z—cpm) - o(z—cm)
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C, Bpt1,- -, Bg—k+1 are the constants satisfying the conditions
2081+ Bot 4 Byky1) Fegi1t gt o = 200 +er ey,

al)ﬁnga ]:p+1a7q_k+1a

. f(t)
C——% 0 [C(t— B1) + (B — ai)]dt.

Note. The inversion formula of the integral equation in the case when the line L
is consisted of closed contours is obtained by the author in [2].
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