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ON HYDRAULIC CALCULUS OF THE MAIN PIPE-LINE OR A BASE
OF THE NON-LINEAR MODEL
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The problems of hydrogasodynamics are described with the non-linear partial dif-
ferential equations [1,2,3] and in every particular case they need different approach
[4,5].

We consider the non-stationary gas flow in the main pipe-line, which is described
by the system of non-linear partial differential equations [2,3]:
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where P = P(x,t) is the gas pressure, Q = Q(z,1) is the outlay, A and B are the given
constants. For this system according units of the parameters are known [2,3].
For the system (1), (2) we consider the initial and boundary conditions:
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where L is the length of the pipe-line.
The existence of the solutions of the system (1), (2) is not known.
For the finding an approximate solutions we can use finite difference scheme or
everageze the quantity )/ P by means of which we can linearized the system (1), (2).
The well-known everageze
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is also considered.

By this method we can obtain the approximate solution in the analytic form.

In [1] the approximate solutions are given in the analytic form, when P; and @) are
the constants.

We consider the non-stationary boundary conditions.

Taking into the account (4) in (2) and integrated along the segment [x, L], we obtain
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Integrated the equation (1), using the formula (5) and the representation of square
root by the series eliminated terms of the third and more power, we obtain
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Hence, if we find the function ¢(t), the approximate solution of the system (1), (3)
will be given by (5), (6).
Let us introduce the notations
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then we obtain
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Integrated the previous formula along the segment [0, L] and taking into the account

(4) we obtain
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Finally, putting t = 0 and x = L, we get
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