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Environment protection is one of the most urgent issues of today. So diagnosis,
analysis of adverse substances and prognosis of their space-time distribution is one of
the main problems of modern science. And numerical experiment, mathematical and
computer simulation is an efficient method for analysis, diagnosis and prognosis of the
factors causing ecological balance changes.

As know a harmful substance transfer throught the atmosphere can be described
by the following equation [1-3]
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where q is concentration; u,v,w are the axial components of wind velocity along axis
OX, OY, and OZ; kx, ky, and kz are the coefficients of turbolent diffusion; α - is the
coefficient that determines the velocity of substance concentration changes during the
process of substance decomposition and transformation; F (x, y, z, t) is integral source.

Let the axis OX be directed along the earth parallel. The axis OY be directed along
the meridian and the axis OZ be directed along the earth radius vertically upward.

Mountains exert a considerable influence on the atmosphere over a wide range of
space and time scales [4]. Therefore for Caucasian region taking into consideration
orographical effects in numerical weather forecast schemes has great importance. The
sigma coordinate pressure normalized by its surface value its used as a way of con-
veniently incorporating variations in the height of the earth’s surface. The governing
equations for free baroclinic atmosphere, in the limits of quasi-statistic, is sigma coor-
dinate system are the following [5.6]
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where σ = ξ−ξtop

Πs
, ξ = P
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P is the pressure, ξ = P

P0
, P0 = 1000 mb, Π0 = ξx −
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, Ps is the pressure surface value, Ptop =const, k=1,4 u and v are the

wind velocity components in x ections, respectively,
0
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∂t
, Θ− is the vertical velocity

component, Θ is the potential temperature.
The system of equations (1)-(7) is solved in the area
G = 0 ≤ x ≤ L, 0 ≤ y ≤ L, 0 ≤ σ ≤ l
With bound Γ by the following initial and boundary conditions:
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where A1 = RΘξ
1
k σ

At the top of the atmosphere we admit that the vertical velocity and vertical fluxes
vanish,. At the bottom we assume air impenetrability through earth’s surface. At

σ = 0 and σ = l we have σ̇ = 0,
∂q
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= 0. (9)

Taking into consideration (5) and (9) we obtain for σ̇
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Further rewrite equations (3), (4) for the two-dimensional case in the form
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At the lateral bounds in case of air inflow we set normal velocity component u or
(v) and Ω. We obtain the other wind velocity component from (11) and (12)
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In case of air outflow we have
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Geopotential and temperature in both cases are extrapolated from internal area
with the following expressions;
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But the use of sigma coordinates has several problems. One of them is the presence
in governing equation of terms which, over steeply sloping orography, are individually
relatively large, but which cancel. Much attention has been devoted to achieving an
accurate computation of the two terms which form the net pressure gradient in the
horizontal momentum equation [3,7]. To get ride of this problem in this paper we use
the fine mesh for the compound orographic region; horizontal average temperature in
the pressure gradient Term; sigma coordinate with changed top bound for this region.

For the purpose to keep full energy of the system of equations (3)-(7) in numerical
model at every step of time we redistribute potential temperature and apply pseudo-
viscosity terms.
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where ϕ = {u, v, Θ}T , ∆l, ∆σ are horizontal and vertical grid steps, respectively.
In the domain G consider a grid ḡ1 = {xi = i∆x, jj = j∆y, σ = k∆σ, ts = s∆t}

i = ¯1, N, j = ¯1,M, s = 0, 1, 2, ..., here ∆x, ∆y are horizontal grid steps in direction x
and y respectively; ∆σ is the vertical step.

The system of equations (2)-(7) with the initial (8) and boundary conditions (9),
(13)-(16) is resolved in ḡ by the Lax-Wendroff method. The parameters of the task
had the following values:

∆x = ∆y = 100km, ∆σ = 0.25, Ptop = 300mb, N = 22, M = 6.
In this model coarse mesh grid covers the large region other a fine mesh grid ḡ2 is

located inside of ḡ1 and entirely covers the Caucasian region. The grid sizes for these
two meshes are in the ratio 2 to 1. Numerical experiments were carried out both one-
directional between two grids (boundary conditions for the smaller region were taken
from the solution of the larger domain) and two-directional additionally (the solutions
obtained in the small domain were used during solving in the large domain). Solution
of the task in ḡ2 is carried out with the initial (8) and boundary conditions (9), (13) -
(16) using solutions obtained in the larger domain. Linear interpolations in time and
space are used whenever necessary. Local boundary smoothing is applied to all variable
at the gridpoints next to the bound areas with the expression [8]
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During performing each numerical experiments we tested the computational sta-
bility of the numerical model. The conservation of the full and kinetic energy and
tendency of changing of meteorological elements in time is performed by the following
expression:

|ϕt| = q
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∑
|ϕi,s+∆t − ϕi,x| , (17)

where ϕ = {u, v, Φ, Θ}T , N is a number of all points of the grids. Numerical exper-
iments have shown that in case of employment of two-direction method between two
grids behaviors of the expression (17) and kinetic energy were not realitic in initial 8
hours of forecasting. It was not observed during calculation with one-dimensional inter-
action between two grids. Our investigations have shown that distinction of orography
detalization on the different grids was more exhibited while performing two-dimensional
computations. Therefore we apply one-directional interaction between two grids at ini-
tial 8 hours of computation and after that we apply two-directional interaction, called
by combined method.

As we can see from the results given by two-directional method are better than the
results obtained by one-directional method. In this case on average improvement is
about 5.18%. But the best results we obtained applying combine nested grid method.
In this case an average improvement in comparison with two-directional method is
about 8.4%. Hence we can deduce, that including the detailed orography in the nu-
merical model improves the quality of forecast and applying of the combine nested grid
method in short-term predication in the Caucasian region gives the best results.

Some numerical experiments connected with environmental pollution were carried
out on the basis of the given model. They were mainly different from the task of
the meteorological conditions and capasity of harmful substances ejection. Due to the
numerical experiments the basic part of harmful substances have fallen down neigh
bour hood of the Main Caucasus Range. The relief has caused significant change of
the surface speed field. In the western part of the Main Caucasus Range a horizontal
flow around mountain range has taken place.

Numerical calculations have shown that distribution of concentrations in the Cau-
casus region represents compound hydrodynamics process, which is depended on the
wind velocity, on the turbulance, on the location of the sources, on the initial distri-
bution of the harmful substance’s concentration, temperature, geopotential fields and
the form of relief.
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