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ON THE PROBLEM OF CONVERGENCE OF COSTS
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Iv. Javakhishvili Tbilisi State University

1. The problem of convergence of costs in the Kalman–Bucy scheme of partially
observable random processes has been studied in a lot of works (see, for example,
[3], [4], [5]). In the present paper, this problem is being studied for the generalized
Kalman–Bucy scheme ([2]).

Consider the generalized Kalman–Bucy scheme of partially observable random pro-
cesses ([2])

Yt = Y0 + Y ◦ A1(t) + M1(t), t ≥ 0, (1)

Xt = X0 + Y ◦ A2(t) + εM2(t), t ≥ 0, (2)

where M1(t) and M2(t) are the local martingales, A1(t) and A2(t) are the determin-
istic functions, and (Y0, X0,M1(t),M2(t)) is the Gaussian system. H ◦ A denotes the
Lebesgue–Stieltjes integral of the process H with respect to the process A.

Assume that the gain function is linear and has the form

g(t, x) = f0(t) + f1(t)x, (3)

where f0(t) and f1(t) are the deterministic measurable functions.
Introducer the costs

s0 = sup
τ∈MY

Eg(τ, Yτ ), (4)

sε = sup
τ∈MX

Eg(τ, Yτ ), (5)

where My and MX are the classes of stopping moments with respect to the families of
σ-algebras (FY

t ) and (FX
t ), FY

t = σ{Ys, 0 ≤ s ≤ t}, FX
t = σ{Xs, 0 ≤ s ≤ t}.

Suppose now that for the functions g0(t), g1(t), g2(t) and for the increasing process
Zt the following conditions are fulfilled:

I. EY 2g2 ◦ 〈M2〉 is increasing;
II. 〈M1〉 = g1 ◦ Z, 〈M2〉 = g2 ◦ Z;
III. ∆A2 = 0, 〈M1,M2〉 = 0,

where 〈M1〉 and 〈M2〉 are quadratic characteristics of the local martingales M1 and
M2, and 〈M1,M2〉 is their mutual quadratic characteristic.

Further, let Et(A1) denote a stochastic exponent, or a solution of the linear stochas-
tic Dolean equation

Et(A1) = 1 + Et(A1) ◦ A1, (6)

and let ρ(t) be a continuous increasing function, majorizing the function (1+∆A1)
2g2|g2

0.
Let, moreover,

mt = E(Y | FX), γt = E(Yt −mt)
2. (7)
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2. In the theorem below we will prove the convergence of the cost sε to the cost s0,
as ε → 0. Assume that 0 ≤ f1(t) ≤ F < ∞.

Theorem. Let a partially observable random process be given by the equations (1),
(2), the costs (4), (5) be defined, and the conditions I–III be fulfilled. Then the estimate

s0 − sε ≤ ε · F · ρ(t) · E2
t (A1) (8)

holds.
proof. First of all, it should be noted that the difference of costs can be estimated

by γt as follows ([4]):
s0 − sε ≤ F · γt, (9)

where γt satisfies the equation

γt = γ0 + γt(2 + ∆A1) ◦ A2 + 〈M1〉 − q2 ◦ (〈εM2〉), ,

q =
d[γt · (1−∆A1) ◦ A2]

d(〈εM2〉) .

Introduce the transformation

γt = ε · ut · E2
t (A1) (10)

and show that ut ≤ ρ(t) for every t ≥ 0. Thus the theorem is complete. We have

γt =

t∫

0

γs · (2 + ∆A1)g1(s) dZs+

+

t∫

0

g1(s) dZs − 1

ε2

t∫

0

γ2
s · (1 + ∆A1)

2g2(s)

g2(s)
dZs,

whence for ut we can write

ε

t∫

0

E2
s (A1) dus =

t∫

0

g1(s) dZs−

−
t∫

0

u2
s · E4

s (A1)(1 + ∆A1)
2g2(s)

g2(s)
dZs.

From the last relation it immediately follows that

ut =
1

ε

t∫

0

E2
s (A1)g1(s) dZs − 1

ε

t∫

0

u2
s · E2

s (A1)g
2(s)

g2(s)
dZs =

=
1

ε

t∫

0

E2
s (A1)g

2(s)

g2(s)

[(1 + ∆A1)
2g2(s)

g2(s)
− u2

s

]
dZs. (11)
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Just as in [4], from (11) we can conclude that ut ≤ ρ(t), which provides us with the
estimate (8).
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