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1. We consider the (B, S)-financial market consisting of two kinds of assets: the
bank account (bonds) B = (Bn) and the stocks S = (Sn), n = 0, 1, . . . , N . According to
the well known Cox–Ross–Rubinstein binomial model, the behavior of these variables
with respect to time can be expressed in terms of the recurrent relations

Bn =(1 + r)Bn−1, Sn = (1 + ρn)Sn−1, B0 > 0, S0 > 0, (1)

where r > 0 is an interest rate and ρ = (ρn) is a sequence of independent, identically
distributed random variables taking only two values a and b, −1 < a < r < b, n =
0, 1 . . . , N .

The European type standard option with the payoff function

fN = f(SN) = max(SN −K, 0) (2)

is a bank-eligible security which can be used to buy a stock at a fixed time moment N
and at an a priori prescribed price K > 0.

Let us assume that the investors initial capital is X0 = x > 0 and we have a
sequence of positive functions g = (gn), n = 0, 1, . . . , N , g0 = 0.

Assume that at a time moment n− 1 the investor constructed the strategy πn−1 =
(βn−1, γn−1) (portfolio), where βn−1 and γn−1 are respectively the number of bonds and
the number of stocks. If at a time moment n− 1 the process of bonds and stocks are
respectively Bn−1 and Sn−1, then the investors capital has the form

Xπ
n−1 = βn−1Bn−1 + γn−1Sn−1. (3)

We will construct a new minimal strategy π∗n = (β∗n, γ∗n) such that the equalities

Xπ∗
n−1 = β∗nBn−1 + γ∗nSn−1 + gn, (4)

Xπ∗
N = β∗NBN + γ∗NSN = f(SN) (5)

be fulfilled. As to the option price, it is an initial sum such that guarantees the
fulfillment of equality (5). The option price is denoted by CN .

2. Suppose we consider the standard option with the payoff function (2) and

gn = c1βnBn−1 + c2γnSn−1, 0 < c1 < 1, 0 < c2 < 1. (6)

Lemma 1. At each time moment n, n = 0, 1, . . . , N − 1, a minimal strategy
π∗n+1 = (β∗n+1, γ

∗
n+1) is defined by the equalities

β∗n+1 =
(1 + b)f((1 + a)Sn)− (1 + a)f((1 + b)Sn)

(1 + r)(b− a)Bn

, (7)
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γ∗n+1 =
f((1 + a)Sn)− f((1 + b)Sn)

(b− a)Sn

. (8)

Proof. Assume that at some moment of time n we have the portfolio πn = (βn, γn).
We need to construct a portfolio πn+1 = (βn+1, γn+1) such that

Xπ
n+1 = βn+1Bn+1 + γn+1Sn+1 = f(Sn+1)

be fulfilled at a moment of time n + 1.
Then, taking into the financial (B, S)-market model (1), for the unknown values

βn+1 and γn+1 we obtain a system of two unknown linear equations, the solution of
which (β∗n+1, β

∗
n+1) is given by equalities (7) and (8).

Lemma 2. The capital of the minimal strategy constructed by equalities (7), (8) is
defined by the equality

Xπ∗
n =

1 + c1

1 + r
[p∗f((1 + b)Sn) + (1− p∗)f((1 + a)Sn)], (9)

where

p∗ =
r − c1(1 + a) + c2(1 + r)− a

(b− a)(1 + c1)
. (10)

Proof. Assume that the portfolio πn+1 = (βn+1, γn+1) is constructed at a moment
of time n. Then its corresponding capital can be written in the form

Xπ
n = βn+1Bn + γn+1Sn.

If in this expression the values n+1 and n+1 are replaced by the values β∗n+1 and γ∗n+1

defined by equalities (7) and (8), then we easily obtain the capital process expression (9)
which actually represents the corresponding amount of the portfolio π∗n+1 = (β∗n+1, γ

∗
n+1)

at the moment of time n.
Lemma 3. The following recurrent equalities are valid:

CN−k,j =
1 + c1

1 + r
[p∗CN−k+1,j+1 + (1− p∗)CN−k+1,j], (11)

where k = 1, . . . , N , j = 0, 1, . . . , N − k, the value p∗ is defined by equality (10) and
C0,0 = CN .

Proof. We use the method of construction of a binomial tree with N steps and
the terminal node N + 1. At a moment of time n = 1, 2, . . . , N the stock cost can be
calculated by the equalities SN = SN,j = S0(1 + b)j(1 + a)N−j, j = 0, 1, . . . , N .

At the terminal moment of time n = N , the option prices at a node N + 1 are
calculated by the equalities fN = fN,j = f(SN,j), j = 0, 1, . . . , N .

Now, at a moment of time N − 1, the current option prices at the preceding node
N are calculated by the equalities

CN−1,j =
1 + c1

1 + r
[p∗fN,j+1 + (1− p∗)fN,j], j = 0, 1, . . . , N − 1.
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Analogously, at a time moment N − 2 we will have at an N − 1 node

CN−2,j =
1 + c1

1 + r
[p∗CN−1,j+1 + (1− p∗)CN−1,j], j = 0, 1, . . . , N − 2.

Continuing this procedure, we easily obtain relation (11) for a node N − k + 1. If
we continue the procedure in this manner, then at a moment of time n = N −N = 0
we reach the initial node or the vertex of the binomial tree with N steps, where the
true price of the option is calculated by the equality

CN =0,0=
1 + c1

1 + r
[p∗C1,1 + (1− p∗)C1,0].

Theorem. An option price is defined by the equalities

CN = S0

N∑

k=k0

Ck
N(p∗)k(1− p∗)N−k

((1 + c1)(1 + a)

1 + r

)N( 1 + b

1 + a

)k

− (12)

−K
(1 + c1

1 + r

)N
N∑

k=k0

Ck
N(p∗)k(1− p∗)N−k,

where k0 is the smallest integer number for which there holds the inequality

S0(1 + a)N
( 1 + b

1 + a

)k0

> K.

Proof. Assume that f is some payoff function and p is a number such that 0 <
p < 0. Let us introduce the notation

Fn(x; p) =
n∑

k=0

f
(
x(1 + b)k(1 + a)n−kCk

npk(1− p)n−k
)
.

In that case, if f is a payoff function of a European type standard put option, then
we have

FN(S0; p
∗) =

=
N∑

k=0

Ck
N(p∗)k(1− p∗)N−k max

(
0, S0(1 + a)N

( 1 + b

1 + a

)k

(1 + c1)
N −K

)
.

If k0 > N , then it can be easily shown that FN(S0; p
∗) = 0, while if k0 ≤ N , then

relation (12) is fulfilled.
The lemmas are proved by means of the so-called binomial trees and the reciprocal

portfolio principle, while the theorem is proved by using [1] and [2].
3. Let us now consider the binomial trees and, using the obtained formulas, solve

the one-step N = 1, n = 0, 1 and two-step N = 2, n = 0, 1, 2 problems. We introduce
the notation

S1 = S1,j = S0(1 + b)j(1 + a)1−j, f1 = f1,j = f(S1,j), j = 0, 1, (13)

S2 = S2,j = S0(1 + b)j(1 + a)2−j, f2 = f2,j = f(S2,j), j = 0, 1, 2. (14)
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It is assumed that B0 = 20, r = 1
5
, K = 100, S0 = 100, ρn = b = 3

5
, or ρn = a = −2

5
,

n = 0, 1, 2.
Example 1. N = 1, n = 0, 1; c1 = 1

40
, c2 = 1

50
. We have C2 = 609

20
, β∗1 = −3

2
,

γ∗1 = 3
5
, g1 = 9

20
, Xπ∗

0 = C1.

1) if S1 = S1,1 = 160, then Xπ∗
1 = f(S1) = 60;

2) if S1 = S1,0 = 60, then Xπ∗
1 = f(S1) = 0.

Example 2. N = 2, n = 0, 1, 2; c1 = 1
40

, c2 = 1
50

. We have

C2 =
609 · 203 · 13

40000
, β∗1 = −609 · 13

4000
, γ∗1 =

609 · 13

10000
,

g1 =
609 · 13 · 3

40000
, Xπ∗

0 = C2.

Case I. S1 = S1,1 = 160, β∗2 = −13
4
, γ∗2 = 39

40
, g2 = 117

100
.

1) if S2 = S2,2 = 256, then Xπ∗
2 = f(S2) = 156;

2) if S2 = S2,1 = 96, then Xπ∗
2 = f(S2) = 0.

Case II. S1 = S1,0 = 60, β∗2 = γ∗2 = g2 = 0.

1) if S2 = S2,1 = 96, then Xπ∗
2 = f(S2) = 0;

2) if S2 = S2,0 = 36, then Xπ∗
2 = f(S2) = 0.
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