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Abstract

The contact problem for homogeneous equation systems of classic and asymmetrical theory

is considered, when a spare is the contact surface. it is proved, that the problem has a singular

solution. The solution is presented in the form of absolutely and uniformly convergent series.
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Let Ω+ be the spere bounded by spherical surface ∂Ω with the center in the origin
and the radius R.

Problem (C). Find the regular vectors u(0)(x) and u(1)(x) in Ω+ and Ω− areas
accordingly, satisfying:

1. equations [1.3]

M(∂x)u(o)(x) = ∆(µ0 − ν0∆)u(0)(x) + (λ0 + µ0 + ν0∆) grad div u(0)(x) = 0, x ∈ Ω+,

A(∂x)u(1)(x) = µ1∆u(1)(x) + (λ1 + µ1) grad div u(1)(x) = 0, x ∈ Ω−, (1)

2. boundary conditions

[u(0)(z)]+ − [u(1)(z)]− = f (1)(z), z ∈ ∂Ω,

[T (0)(∂z, n)u(0)(z)]+ − [T (1)(∂z, n)u(1)(z)]− = f (2)(z), z ∈ ∂Ω, (2)

[R(0)(∂z, n)u(0)(z)]+ = f (3)(z), z ∈ ∂Ω,

3. Vector u(1)(x) satisfies nearby infinitely distant pint the conditions:

u
(1)
j (x) = O(|x|−1),

∂u
(1)
j (x)

∂xk

= o(|x|−1), k, j = 1, 2, 3, (3)

where f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 , ), j = 1, 2, 3 are the given vectors on ∂Ω, n(z) is the

ort of normal outside with regard to Ω+ in point z ∈ ∂Ω. u(j)(x) = (u
(j)
1 (x), u

(j)
2 (x),

u
(j)
3 (x)), j = 0, 1- the vector if displacement, ∆-laplace operator.

T (0)(∂x, n)u(0) = 2µ0
∂u(0)

∂n
+ λ0n div u(0) + µ0[n× rot u(0)] + ν0[n×∆ rot u(0)]

−1

2
[n× grad(n · q(u(0)))],
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T (0)(∂x, n)u(1) = 2µ1
∂u(1)

∂n
+ λ1n div u(1) + µ1[n× rot u(1)],

R(∂x, n)u(0) = rot u(0) − n(n · rot u(0)),

q(u(0)) = 2(ν0 + ν ′0)
∂

∂n
rot u(0) + 2ν ′[n× rot rot u(0)],

λj, µj, ν0, ν ′0, j = 0, 1-elastic constants, satisfying the following conditions:

µj > 0, 3λj + 2µj > 0, |ν ′0| ≤ ν0, j = 0, 1.

Theorem 1. The problem (C) permits not more than one regular solution.
Proof. The theorem will be proved, if we show that the corresponding homogeneous

problem (f (j)(z) = 0, j = 1, 2, 3) has only trivial solution. Green’s formula in Ω−

domain area for system (1) has a form [3,5]

∫

Ω−

u(1)(x) · A(∂x)u(1)(x) dx = −
∫

∂Ω

[u(1)(z)]− · [T (1)(∂z, n)u(1)(z)]−ds (4)

−
∫

Ω−

Ẽ(1)(u(1), u(1)) dx,

keeping in mind boundary conditions of problem (C)0 ,we’ll have:

∫

Ω+

u(0)(x) ·M(∂x)u(0)(x) dx =

∫

∂Ω

{[u(0)(z)]+ · [T (0)(∂z, n)u(0)(z)]+ (5)

+[R(∂z, n)u(0)(z)]+ · [Q(0)(∂z, n)u(0)(z)]+} ds−
∫

Ω+

E(0)(u(0), u(0)) dx,

where [3,5]

Ẽ(1)(u(1), u(1)) ≥ 0, E(0)(u(0), u(0)) ≥ 0,

ω
(0)
k =

1

2
(rot u(0))k, k = 1, 2, 3,

Q(0)(∂x, n)u(0) =
1

2

[
q(u(0))− n(n · q(u(0)))

]
.

Keeping in mind boundary conditions of problem (C)0, we’ll have:

E(0)(u(0), u(0)) = 0, Ẽ(1)(u(1), u(1)) = 0.

The solutions of these equations have the form [3,5]:

u(0)(x) = [a(0) × x] + b(0), x ∈ Ω+,
u(1)(x) = [a(1) × x] + b(1), x ∈ Ω−,
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Taking into consideration conditions (3) and boundary conditions of problem (C)0,
we’ll have: u(0)(x) = 0, x ∈ Ω+, u(0)(x) = 0, x ∈ Ω−.2

The solution of problem (C) we’ll search in the form [5]:

u(0)(x) = grad Φ
(0)
1 (x)− a0 grad r2

(
r

∂

∂r
+ 1

)
Φ

(0)
2 (x) + rot rot(xr2Φ

(0)
2 (x))

+ rot(xΦ
(0)
3 (x)) + rot rot(xΦ

(0)
4 (x)) + rot(xΦ

(0)
5 (x)), x ∈ Ω+, (6)

u(1)(x) = grad Φ
(1)
1 (x)− a1 grad r2

(
r

∂

∂r
+ 1

)
Φ

(1)
2 (x) + rot rot(xr2Φ

(1)
2 (x))

+ rot(xΦ
(1)
3 (x)) x ∈ Ω+,

where Φ
(l)
j (x), l = 1, 2, j = 1, 2, 3-scalar harmonic functions, Φ

(0)
j (x), j = 4, 5-

scalar metaharmonic functions.

(∆− l2)Φ
(0)
j (x) = 0, j = 4, 5, l2 =

µ

ν
, al = µ(λl + 2µl)

−1, l = 0, 1,

x = (x1, x2, x3), r = |x|, r
∂

∂r
= x · grad .

We write down functions Φ
(l)
j (x) in the form:

Φ
(0)
j (x) =

∞∑

k=0

k∑

m=−k

( r

R

)k

Y
(m)
k (θ, ϕ)A

(j)
mk, j = 1, 2, 3,

Φ
(0)
j (x) =

∞∑

k=0

k∑

m=−k

gk(lr)Y
(m)
k (θ, ϕ)A

(j)
mk, j = 4, 5, (7)

Φ
(1)
j (x) =

∞∑

k=0

k∑

m=−k

(R

r

)k

Y
(m)
k (θ, ϕ)B

(j)
mk, j = 1, 2, 3,

where (r, θ, ϕ)-spherical coordinates of the point x; A
(j)
mk, B

(j)
mk-desired constants

Y
(m)
k (θ, ϕ) =

√
2k + 1

4π
· (k −m)!

(k + m)!
P

(m)
k (cos θ)eimϕ,

gk(lr) =

√
R

r

Ik+ 1
2
(lr)

Ik+ 1
2
(lR)

,

P
(m)
k (cos θ)-Lejandr’s added function of the first type, Ik+ 1

2
(lr)-Besel’s function of

imaginary argument.
if the value of functions Φ

(l)
j (x) put from (7) to (6), we’ll have:

u(j)(x) =
∞∑

k=o

k∑

m=−k

{u(j)
mk(r)Xmk(θ, ϕ) +

√
k(k + 1)[v

(j)
mk(r)Ymk(θ, ϕ)
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+w
(j)
mk(r)Zmk(θ, ϕ)]},

T (j)(∂x, n)u(j)(x) =
∞∑

k=o

k∑

m=−k

{a(j)
mk(r)Xmk(θ, ϕ) +

√
k(k + 1)[b

(j)
mk(r)Ymk(θ, ϕ) (8)

+c
(j)
mk(r)Zmk(θ, ϕ)]}, j = 0, 1,

R(∂x, n)u(0)(x) =
∞∑

k=1

k∑

m=−k

√
k(k + 1)[b

(2)
mk(r)Ymk(θ, ϕ) + c

(2)
mk(r)Zmk(θ, ϕ)]

Where u
(j)
mk(r), . . . , c

(j)
mk(r), b

(2)
mk(r), c

(2)
mk(r), j = 0, 1-functions of r, Xmk(θ, ϕ),

Ymk(θ, ϕ), Zmk(θ, ϕ)-ortonormalized vectors in L2(Σ1) class [4].
Let vector f (j)(z), j = 1, 2, 3 satisfy the conditions, under which we can spread it

out by Fourie-Laplass series in system

{Xmk(θ, ϕ), Ymk(θ, ϕ), Zmk(θ, ϕ)}|m|≤k, k=0,∞,

f (j)(z) =
∞∑

k=o

k∑

m=−k

{α(j)
mkXmk(θ, ϕ) +

√
k(k + 1)[β

(j)
mkYmk(θ, ϕ) + γ

(j)
mkZmk(θ, ϕ)]},(9)

f (3)(z) =
∞∑

k=1

k∑

m=−k

√
k(k + 1)[β

(3)
mkYmk(θ, ϕ) + γ

(3)
mkZmk(θ, ϕ)]. j = 1, 2,

proceeding to limit in both sides of the equality (8), when x → z ∈ ∂Ω keeping in mind
boundary conditions (2), formulas (9) also, we’ll have following system for desired
constants:

u
(0)
mk(R)− u

(1)
mk(R) = α

(1)
mk, a

(0)
mk(R)− a

(1)
mk(R) = α

(2)
mk, k ≥ 0,

v
(0)
mk(R)− v

(1)
mk(R) = β

(1)
mk, b

(0)
mk(R)− b

(1)
mk(R) = β

(2)
mk,

w
(0)
mk(R)− w

(1)
mk(R) = γ

(1)
mk, c

(0)
mk(R)− c

(1)
mk(R) = γ

(2)
mk,

b
(2)
mk(R) = β

(3)
mk, c

(2)
mk(R) = γ

(3)
mk, k ≥ 1.

This system is compatible according to uniqueness theorem, Putting the solution
of the system (9) in (8), we’ll find the solution of the problem (C). if f (1)(z) ∈
C4(∂Ω), f (j)(z) ∈ C3(∂Ω), j = 2, 3, then series (8) are absolutely and uniformly
convergent in Ω+ and Ω− areas.
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