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ON A LINEAR INTEGRAL EQUATION OF THE THIRD KIND
ARISING FROM THE NEUTRON TRANSPORT THEORY

Shulaia D.

I. Vekua Institute of Applied Mathematics

The aim of this paper is to study, in the class of Hölder functions, linear integral
equations which frequently occurs when investigating many important problems of
mathematical physics, namely in problems of the two-dimensional transport theory
[1]. This equations have the form

cos xϕ(x) +

∫ b

a

K(x, y)ϕ(y)dy = f(x), x ∈ (a, b), (1)

where cos x vanishes at least once in the interval (a,b). By using the theory of singular
integral equations, the necessary and sufficient conditions for the solvability of this
equation under some assumptions on their kernels are given.

We assume that the kernel K of the equation (1) satisfies Hölders H condition, the
right part f ∈ H∗ (Muskhelishvili class ) [2] and we look for solutions ϕ ∈ H∗.

Let æ be the set of eigenvalues of the equation

(cos x− z)τz(x) +

∫ b

a

K(x, y)τz(y)dy = 0, x ∈ [a, b].

Denote

ω(t, x) =
2n∑

l=0

χe(t− lπ)χe(x− lπ),

where χe(t) is the characteristic function of [2aeπ, 2aeπ + π) ae = [ a
2π

] (entire part),
n = b′e − ae, b′e = [ b

2π
] + 1 and consider the following integral equation of the second

kind

M(t, x) +

∫ b

a

K̃(t, x, y)M(t, y)dy = | sin t|K(x, t), t, x ∈ [a, b], (2)

where

K̃(t, x, y) =
n∑

j=−n

(K(x, y)− χ(t(j))K(x, t(j))

cos y − cos t
ω(t(j), y)

+
K(x, y)− χ(t̄(j))K(x, t̄(j))

cos y − cos t
ω(t̄(j), y)

)
,

t(j) = t + 2jπ, t̄(j) = 2mπ − t + 2jπ, m = b′e + ae, and χ(t) is the characteristic
function of [a, b]. Here t is a parameter.

We see that the kernel K̃ does not belong to that type of kernel which as a rule is
called regular. In spite of this, all the fundamental Fredholm theorems are applicable
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to the equation (2), if they are stated in a suitable manner. This can be shown by
reduction of (2) to a Fredholm equation with a bounded kernel (cf. [2]).

Further we consider the case when the following assumptions are satisfied:
A1. æ is a finite set;
A2. The homogeneous equation corresponding to (2) admits only zero solutions for

any values of the parameter t ∈ [a, b];
A3. K(x, y) = K(y, x).
These conditions are fulfilled for a sufficiently wide class of kernels K. Here they

are introduced, having in mind the application to the original equations and in order
to evoid some additional arguments.

We introduce the singular operator define by formula

L(u(·))(x) :=
n∑

j=−n

(αj(x)u(x(j)) + ᾱj(x)u(x̄(j))) +

∫ b

a

M(t, x)

cos t− cos x
u(t)dt,

where

αj(x) = | sin x|δj,0 +

∫ b

a

χ(x(j))M(x(j), y)

cos y − cos x
ω(x, y)dy,

ᾱj(x) =

∫ b

a

χ(x̄(j))M(x̄(j), y)

cos y − cos x
ω(x, y)dy,

x(j) = x + 2jπ, x̄(j) = 2mπ − x + 2jπ, δj,0 is the Kronecer symbol.
Theorem 1. The equation

L(u) = ψ0 (3)

is soluble if and only if ψ0 ∈ H∗ on (a, b) satisfies the conditions

∫ b

a

ψ0τzk
dx = 0, zk ∈ æ.

Provided these conditions are satisfied, the equation (3) has one and only one solution
u ∈ H∗ on (a, b).

Let S be the following integral operator

S(v(·))(x) :=
n∑

j=−n

(χ(x(j))α−j(x
(j))v(x(j)) + χ(x̄(j))ᾱj(x̄

(j))v(x̄(j)))

+

∫ b

a

M(x, t)

cos x− cos t
v(t)dt, x ∈ (a, b), v ∈ H∗.

Denote
βj(x) = ξj(x)

+π2χ(x(j))

j+n∑

l=j−n

(χ(x(l))Q(x, x(l))Q(x(j), x(l)) + χ(x̄(l))Q(x, x̄(l))Q(x(j), x̄(l))),

β̄j(x) = ξ̄j(x)
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+π2χ(x̄(j))

j+n∑

l=j−n

(χ(x(l))Q(x, x(l))Q(x̄(j), x(l)) + χ(x̄(l))Q(x, x̄(l))Q(x̄(j), x̄(l))),

where

ξj(x) =

j+n∑

l=j−n

(χ(x(l))α−l(x
(l))αj−l(x

(l)) + χ(x̄(−l))ᾱ−l(x̄
(−l))ᾱj−l(x̄

(−l))),

ξ̄j(x) =

j+n∑

l=j−n

(χ(x(−l))αl(x
(−l))ᾱj−l(x

(−l)) + χ(x̄(l))ᾱl(x̄
(l))αj−l(x̄

(l))),

Q is defined from the equality M(t, x) =| sin t | Q(t, x).
Theorem 2. The composition SL contains no singular part and the following

equality holds

S(L(u))(x) =
n∑

j=−n

(βj(x)u(x(j)) + β̄j(x)u(x̄(j))).

Let T be the following integral operator

T (v(·))(x) :=
1

| B(x) |
n∑

j=−n

(σ
(1,1)
0j (x)S∗(v)(x(j)) + σ

(1,2)
0j (x)S∗(v)(x̄(j))), x ∈ (a, b),

where σ
(r,s)
0j (x) is algebraic adjunct of β

(s,r)
j0 (x) in | B(x) |, B(x) =‖ Brs(x) ‖ (r, s =

1, 2) is the square block matrix, where Brs =‖ b
(r,s)
ij (x) ‖ (i, j = −n, n) is the square

matrix with elements:

b
(1,1)
ij = χ̃βj−i(x

(i)), b
(1,2)
ij = χ̃β̄i−j(x

(i)),

b
(2,1)
ij = χ̃β̄j−i(x̄

(−i)), b
(2,2)
ij = χ̃βi−j(x̄

(−i)).

Here χ̃ = χ(x(i−j)).
Theorem 3. Let K ∈ H be such that the assumptions Ai, (i = 1, 2, 3) are fulfilled

and f ∈ H∗. equation (1) is soluble, if and only if the function f satisfies the conditions

T (f)(
π

2
+ (2ae + l)π) = 0, l = 0, 2n.

Provided these conditions are satisfied, equation (1) has one and only one solution
ϕ(x) ∈ H∗ on (a,b) and this solution may be written as

ϕ(x) =
∑

k

τzk
(x)

zkNzk

∫ b

a

f(y)τzk
(y)dy + L

( 1

cos(·)T (f)(·)
)
(x),

where

Nzk
=

∫ b

a

τ 2
zk

dx, zk ∈ æ.
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