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ELASTIC BODY IN THE SCALAR FIELD
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Abstract

It is considered the contact problem for domains bounded by spherical surfaces. Uniqueness

theorem of the problem is proved. The solutions are represented by absolutely and uniformly

convergent series.
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We denote by Ω+ the ball bounded by the sphere ∂Ω centered at the origin and
with radius R, i.e. Ω+ = {x : x ∈ R3, |x| < R}, ∂Ω = {x : x ∈ R3, |x| = R}. Let

Ω− = R3 \ Ω
+
. Let us consider the following problem:

Problem (A). Find a regular vector U(x) = (u(x), ω(x)) and a scalar function
v(x) in Ω+ and Ω−, respectively, which satisfy:
a) the differential equations [2]

(µ + α)∆u(x) + (λ + µ− α) grad div u(x) + 2α rot ω(x) = 0,

(ν + β)∆ω(x) + (ε + ν − β) grad div ω(x) + 2α rot u(x)− 4αω(x) = 0, x ∈ Ω+,
(1)

∆v(x) = 0, x ∈ Ω−; (2)

b) the contact and boundary conditions on ∂Ω

[n(z)u(z)]+ − d1

[∂v(z)

∂n(z)

]−
= f4(z),

[H(∂z, n)U(z)]+ − d2n(z)[v(z)]− = f (1)(z), (3)

[T̃ (∂z, n)ω(z)]+ = f (2)(z);

c) while in the vicinity of the infinity the function v(x) meets the following asymptotic
relations

v(x) = O(|x|−1),
∂v(x)

∂xj

= o(|x|−1), j = 1, 2, 3, (4)

where u(x) = (u1(x), u2(x), u3(x)) is the displacement vector, ω(x) = (ω1(x), ω2(x),

ω3(x)) vector of rotation, f (j) = (f
(j)
1 , f

(j)
2 , f

(j)
3 ), f4(z), f

(j)
k (z), k = 1, 2, 3, j = 1, 2, are

given functions on ∂Ω. n(z) is the outward (to Ω+) unit normal vector at the point
z ∈ ∂Ω,
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H(∂x, n)U(x)=2µ
∂u(x)

∂n(x)
+ λn(x) div u(x) + (µ− α)[n(x)× rot u(x)]

+2α[n(x)× ω(x)],

T̃ (∂x, n)ω(x)=2ν
∂ω(x)

∂n(x)
+ εn(x) div ω(x) + (ν − β)[n(x)× rot ω(x)],

λ, µ, ν, α, β, ε, d1, d2 are the constants, which satisfy the conditions: µ > 0, α > 0,
ν > 0, β > 0, 3λ + 2µ > 0, 3ε + 2ν > 0, d1d2 > 0.

Theorem. The general solution of the problem (A)0 (f4 = 0, f (j) = 0, j = 1, 2) is

u(x) = [a× x], ω(x) = a, x ∈ Ω+, v(x) = 0, x ∈ Ω−.

Proof. We have Green’s formulas for (1),(2) system in domains Ω± [2]

∫

Ω+

U(x) ·M(∂x)U(x) dx =

∫

∂Ω

[u(z) ·H(∂z, n)U(z)

+ω(z) · T̃ (∂z, n)ω(z)]+ ds−
∫

Ω+

E(U,U) dx, (5)

∫

Ω−

v(x)∆v(x) dx = −
∫

∂Ω

[
v(z)

∂v(z)

∂n(z)

]−
ds−

∫

Ω−

(grad v(x))2 dx,

where

E(U,U) =
3λ + 2µ

3
(div u)2 +

3ε + 2ν

3
(div ω)2 +

µ

2

3∑
i,j=1

(∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij div u

)2

+
ν

2

3∑
i,j=1

(∂ωi

∂xj

+
∂ωj

∂xi

− 2

3
δij div ω

)2

+
α

2

3∑
i,j=1

(∂uj

∂xi

− ∂ui

∂xj

+ 2
3∑

k=1

εkjiωk

)2

+
β

2

3∑
i,j=1

(∂ωj

∂xi

− ∂ωi

∂xj

)2

,

M(∂x)U(x) is the left part of the system (1).
Taking into account the conditions of the Problem(A)0. from (5) we have

E(U,U) = 0, grad v(x) = 0.

The solutions of this equations has the form [2]

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω+, v(x) = c, x ∈ Ω−,

where a and b are three-dimensional vectors, c is a constant.
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From the conditions (4) and boundary conditions of problem (A)0 we have

u(x) = [a× x], ω(x) = a, x ∈ Ω+, v(x) = 0, x ∈ Ω−.2

Let us seek the solutions of the formulated problem (A) in the form [3]

u(x) = grad Φ1(x)− a grad r2
(
r

∂

∂r
+ 1

)
Φ2(x) + rot rot(xr2Φ2(x)) +

+ rot(xΦ3(x)) + 2α[rot rot(xΦ5(x)) + rot(xΦ6(x))],

ω(x) = grad Φ4(x)− rot
[
x
(
2r

∂

∂r
+ 3

)
Φ2(x)

]
+

1

2
rot rot(xΦ3(x)) (6)

−(µ + α)[λ2
2 rot(xΦ5(x))− rot rot(xΦ6(x))],

v(x) =
∞∑

k=0

k∑

m=−k

(R

r

)k+1

Y
(m)
k (ϑ, ϕ)Bmk, (7)

where Bmk is sought for constant, x = (x1, x2, x3), r = |x|, r ∂
∂r

= (x·grad), ∆Φj(x) = 0,
j = 1, 2, 3, (∆ − λ2

1)Φ4(x) = 0, (∆ − λ2
2)Φj(x) = 0, j = 5, 6, a = µ(λ + 2µ)−1,

λ2
1 = 4α(ε + 2ν)−1, λ2

2 = 4αµ[(ν + β)(µ + α)]−1,

Y
(m)
k (ϑ, ϕ) =

√
2k + 1

4π
· (k −m)!

(k + m)!
P

(m)
k (cos ϑ)eimϕ.

We look for functions Φj(x), j = 1, 2, . . . , 6, in the following form

Φj(x) =
∞∑

k=0

k∑

m=−k

( r

R

)k

Y
(m)
k (ϑ, ϕ)A

(j)
mk, j = 1, 2, 3,

Φ4(x) =
∞∑

k=0

k∑

m=−k

gk(λ1, r)Y
(m)
k (ϑ, ϕ)A

(4)
mk, (8)

Φj(x) =
∞∑

k=0

k∑

m=−k

gk(λ2, r)Y
(m)
k (ϑ, ϕ)A

(j)
mk, j = 5, 6,

where

gk(λjr) =

√
R

r

Ik+ 1
2
(λjr)

Ik+ 1
2
(λjR)

, j = 1, 2.

Upon substitution of the Φj(x) from (8) into the representations u(x) and ω(x), we
have

u(x) =
∞∑

k=0

k∑

m=−k

[
u

(1)
mk(r)Xmk(ϑ, ϕ) +

√
k(k + 1)

(
v

(1)
mk(r)Ymk(ϑ, ϕ)

+w
(1)
mk(r)Zmk(ϑ, ϕ)

)]
,

ω(x) =
∞∑

k=0

k∑

m=−k

[
u

(2)
mk(r)Xmk(ϑ, ϕ) +

√
k(k + 1)

(
v

(2)
mk(r)Ymk(ϑ, ϕ) (9)

+w
(2)
mk(r)Zmk(ϑ, ϕ)

)]
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The stress vectors has the following form

H(∂x, n)U(x) =
∞∑

k=0

k∑

m=−k

[
a

(1)
mk(r)Xmk(ϑ, ϕ) +

√
k(k + 1)

(
b
(1)
mk(r)Ymk(ϑ, ϕ)

+c
(1)
mk(r)Zmk(ϑ, ϕ)

)]
,

T̃ (∂x, n)ω(x) =
∞∑

k=0

k∑

m=−k

[
a

(2)
mk(r)Xmk(ϑ, ϕ) +

√
k(k + 1)

(
b
(2)
mk(r)Ymk(ϑ, ϕ) (10)

+c
(2)
mk(r)Zmk(ϑ, ϕ)

)]

where u
(j)
mk(z), v

(j)
mk(z),...,c

(j)
mk(z), j = 1, 2 are functions of-r, Xmk(ϑ, ϕ), Ymk(ϑ, ϕ),

Zmk(ϑ, ϕ) are orthonormal vectors from L2(Σ1). [1]
Let us assume that the function f4(z) and the vector f (j)(z), j = 1, 2, satisfy the

sufficient smoothness conditions, that allow us to represent them into a Fourier-Laplas
series

f (j)(z) =
∞∑

k=0

k∑

m=−k

[
α

(j)
mk(r)Xmk(ϑ, ϕ) +

√
k(k + 1)

(
β

(j)
mk(r)Ymk(ϑ, ϕ)

+γ
(j)
mk(r)Zmk(ϑ, ϕ)

)]
, j = 1, 2, (11)

f4(z) =
∞∑

k=0

k∑

m=−k

α
(4)
mkY

(m)
k (ϑ, ϕ).

If in (7), (9), (10), we pass to the limit as x → z ∈ ∂Ω (r → R), with the help
of (11) and the contact and boundary conditions (3), we obtain the system of linear

algebraic equations for the sought for constants A
(j)
mk, Bmk,

u
(1)
mk(R)− d1(k + 1)R−1 Bmk = α

(4)
mk, a

(1)
mk(R)− d2Bmk = α

(1)
mk, k ≥ 0,

b
(j)
mk(R) = β

(j)
mk, c

(j)
mk(R) = γ

(j)
mk, k ≥ 1, j = 1, 2, a

(2)
mk(R) = α

(2)
mk, k ≥ 0.

(12)

The condition ∫

∂Ω

[z × f (1)(z) + f (2)(z)]ds = 0

is necessary and sufficient for the above problem to be solvable.
Substituting of functions f (j)(z), j = 1, 2, into the last formulae, we see that the

coefficient β
(2)
mk and γ

(1)
mk satisfy the following condition

β
(2)
mk + Rγ

(1)
mk = 0, m = 0,±1. (13)

Proceeding from the uniqueness theorem for the Problem (A) and condition (13),

we can infer to (12) system is solvable and the constant A
(3)
m1 is not defined. This is

natural since the solution of the Problem (A) is defined within the vector

u(x) = [a× x], ω(x) = a, v(x) = 0.
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If f (j)(z) ∈ C3(∂Ω), j = 1, 2, f4(z) ∈ C4(∂Ω), then the obtained series (7), (9), (10)
are absolutely and uniformly convergent.
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