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In the present paper we study initial boundary value problem for Schrödinger type
equation, where the unknown function depend on several time variables. The nonclas-
sical equations with several time variables can be considered as mathematical mod-
els of physical, ecological, technological and other processes. Particularly, multi-time
parabolic equations, which are also called pluriparabolic or ultraparabolic equations,
describe the Brown’s motion of particle [1], the processes of refining of impurities
of Silicon laminae [2], diffusion processes [3] and impurity spreading in rivers [4,5].
Schrödinger type equations with several time variables arise while mathematical mod-
elling of the nonstationary stimulated Raman scaterring [6]. Many interesting works
are devoted to the investigation of classical and nonclassical initial boundary value
problems for multi-time evolution equations ([7-15]).

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary Γ = ∂Ω. We de-
note by Hs(Ω), s > 0, s ∈ R, the Sobolev space of complex-valued function of or-
der s based on L2(Ω). Hs

0(Ω) is the closure of the set D(Ω) of infinitely differen-
tiable functions with compact support in Ω in the space Hs(Ω). For any complex

Banach space V we denote by L2(
3∏

j=1

(0, Tj); V ) the space of vector functions defined

in three dimensional parallelepiped (0, T1) × (0, T2) × (0, T3) with values in V such

that ‖g‖V ∈ L2(
3∏

j=1

(0, Tj)). Each vector function g ∈ L2(
3∏

j=1

(0, Tj); V ) we identify with

distribution on
3∏

j=1

(0, Tj) ranging in V [16], and we denote its generalized derivatives

by ∂g/∂tk ∈ D′(
3∏

j=1

(0, Tj); V ), k = 1, 2, 3. Let A be an elliptic operator from H1
0 (Ω) to

its antidual H−1(Ω) of the following form

Av ≡ −
n∑

j,p=1

∂

∂xj

(
ajp

∂v

∂xp

)
+ a0v, ∀v ∈ H1

0 (Ω),

where ajp, a0 ∈ L∞(Ω), ajp(x) = apj(x), a0(x) ≥ 0, for almost all x ∈ Ω, ∂/∂xj

denotes the generalized derivative with respect to xj, j, p = 1, n, and
n∑

j,p=1

ajp(x)ξpξj ≥
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α

n∑
j=1

|ξj|2 , α = const > 0, for all (ξ1, ..., ξn) ∈ Cn, ȳ is the complex conjugate and |y|

is the modulus of a complex number y ∈ C.
Let us consider initial boundary value problem with homogeneous Dirichlet bound-

ary conditions for the following generalization of Schrödinger equation

∂u

∂t1
+

∂u

∂t2
+

∂u

∂t3
+ iAu = f, (t1, t2, t3) ∈ (0, T1)× (0, T2)× (0, T3),

which admits the following variational formulation: find the unknown function u ∈
L2(

3∏
j=1

(0, Tj); H
1
0 (Ω)), ∂u/∂tk ∈ L2(

3∏
j=1

(0, Tj); H
−1(Ω)), k = 1, 2, 3, which satisfies the

equation

3∑
j=1

∂

∂tj
(u(.), v)L2(Ω) + i

∫

Ω

(
n∑

j,p=1

ajp
∂u(.)

∂xp

∂v

∂xj

+ a0u(.)v

)
dx = 〈f(.), v〉 , (1)

for all v ∈ H1
0 (Ω) in the sense of distributions on

3∏
j=1

(0, Tj) and the initial conditions

u(0, t2, t3) = ϕ1(t2, t3), (t2, t3) ∈ (0, T2)× (0, T3),
u(t1, 0, t3) = ϕ2(t1, t3), (t1, t3) ∈ (0, T1)× (0, T3),
u(t1, t2, 0) = ϕ3(t1, t2), (t1, t2) ∈ (0, T1)× (0, T2),

(2)

where f, ϕ1, ϕ2, ϕ3 are given functions from suitable spaces, 〈., .〉 denotes the antiduality
relation between the spaces H−1(Ω) and H1

0 (Ω). Note that it can be defined traces of
function u on the sides of the parallelepiped (0, T1)× (0, T2)× (0, T3) and the k-th (k =

1, 2, 3) condition of (2) can be considered as equality in the space L2(
∏

j 6=k

(0, Tj); L
2(Ω)).

For the stated problem (1), (2) the following theorem is valid.

Theorem. If ϕk ∈ L2(
∏

j 6=k

(0, Tj); H
1
0 (Ω)), ∂ϕk/∂tq ∈ L2(

∏

j 6=k

(0, Tj); H
−1(Ω)), 1 ≤

q ≤ 3, q 6= k, ϕ1(0, t3) =ϕ2(0, t3), ϕ2(t1, 0) = ϕ3(t1, 0), ϕ1(t2, 0) = ϕ3(0, t2),(t1, t2, t3)∈
3∏

j=1

(0, Tj) and f, ∂f/∂tk ∈ L2(
3∏

j=1

(0, Tj); H
−1(Ω)), k = 1, 2, 3, then initial boundary

value problem for the generalized Schrödinger equation has a unique solution and the
following estimate is valid

‖u‖2

L2(
3∏

j=1
(0,Tj);H1

0 (Ω))
+

3∑

k=1

∥∥∥∥
∂u

∂tk

∥∥∥∥
2

L2(
3∏

j=1
(0,Tj);H−1(Ω))

≤ c

(
3∑

k=1

(
‖ϕk‖2

L2(
∏

j 6=k
(0,Tj);H1

0 (Ω))+

+
3∑

q=1, q 6=k

∥∥∥∥
∂ϕk

∂tq

∥∥∥∥
2

L2(
∏

j 6=k
(0,Tj);H1

0 (Ω))

+

∥∥∥∥
∂f

∂tk

∥∥∥∥
2

L2(
3∏

j=1
(0,Tj);H−1(Ω))


 + ‖f‖2

L2(
3∏

j=1
(0,Tj);H−1(Ω))


 .
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