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Equations of statics of the theory of a thermoelastic mixture have the following
form [1]:

a1∆u(1) + b1graddivu(1) + c∆u(2) + dgraddivu(2) = γ1gradu3,

c∆u(1) + dgraddivu(1) + a2∆u(2) + b2graddivu(2) = γ2gradu3,
∆u3 = 0,

(1)

where u(i) = (u
(i)
1 , u

(i)
2 ) are the vectors of particular displacements; u3 is the scalar

function denoting temperature variation; a1, a2, b1, b2, c, d are elastic constants of the
mixture; γ1, γ2 are temperature constants, i = 1, 2.

Consider the disc D(0, R) of radius R with boundary C, occupied by the elastic
mixture.

Problem. Find in the disc D a regular solution U(x) = (u(i), u3) satisfying the
boundary conditions

u(i)(z) = f (i)(z), (2)

du3(z)

dn
= f3(z), (3)

where x = (x1, x2) ∈ D, z ∈ C, f (i) = (f
(i)
1 , f

(i)
2 ), du3

dn
is the heat flow, n = (n1, n2)

is the outer normal to the circumference C; f
(i)
1 , f

(i)
2 , f3 are the continuous functions

given on C, and ∫

C

f3(y) dyC = 0. (4)

Suppose that the function f3 expands into a Fourier series. The unknown func-
tion u3(x), as a solution of the Neumann problem for the Laplace equation with the
condition (3), with regard for (4), can be represented in the form [2]

u3(x) =
∞∑

m=1

R

m
f3m(x) + K0, (5)

or in the form of Dini’s formula

u3(x) =
1

π

∫

C

f3(y) ln
1

ρ
dyC + K0, (6)
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where x = (r; ψ), z = (R, ψ) ∈ C, y = (R, θ) ∈ C, ρ = |x − y|, r2 = x2
1 + x2

2,
x1 = r cos ψ, x2 = r sin ψ, y1 = R cos θ, y2 = R sin θ,

f3m(x) =
1

π

( r

R

)m
∫ 2π

0

cos m(ψ − θ)f3(θ) dθ (7)

is a homogeneous harmonic function of the m-th order, K0 is an arbitrary constant.
A solution u(i) = (u

(i)
1 , u

(i)
2 ) will be sought in the form of the sum of two vectors

u(i)(x) = w
(i)
1 + w

(i)
2 , i = 1, 2, (8)

where w
(i)
1 is the solution of the problem

a1∆w
(1)
1 + b1graddivw

(1)
1 + c∆w

(2)
1 + dgraddivw

(2)
1 = γ1gradu3,

c∆w
(1)
1 + dgraddivw

(1)
1 + a2∆w

(2)
1 + b2graddivw

(2)
1 = γ2gradu3,

(9)

{
w

(i)
1 (x)

}
r=R

= 0, (10)

and w
(i)
2 is the solution of the problem

a1∆w
(1)
2 + b1graddivw

(1)
2 + c∆w

(2)
2 + dgraddivw

(2)
2 = 0,

c∆w
(1)
2 + dgraddivw

(1)
2 + a2∆w

(2)
2 + b2graddivw

(2)
2 = 0,

(11)

{
w

(i)
2 (x)

}
r=R

= f (i)(z), z ∈ C. (12)

A solution w
(i)
1 (x) of the problem (9)–(10) we seek in the form

w
(i)
1 (x) = (R2 − r2)grad

∞∑
m=1

α(i)
m f3m(x), i = 1, 2, (13)

where α
(i)
m are unknown constants, and f3m is defined by formula (7).

In equation (9) we substitute the expressions (5) and (13). For every m we obtain

a system of equations with respect to the unknowns α
(i)
m . Solving this system and

substituting the obtained solutions in (13), we find that

w
(i)
1 (x) =

(R2 − r2)Rei

πb
grad

∫ 2π

0

∞∑
m=1

1

m2

( r

R

)m

cos m(ψ − θ)f3(θ) dθ,

where e1 = −γ1b + 2e2(2c + d)

2(2a1 + b)
, e2 = γ2(2a1 + 1) − γ1(2c + d), b = 2[(2c + d)2 −

(2a1 + b1)(2a2 + b2)].

Using the equalities
∞∑

m=1

τm

m
= − ln(1− τ), |τ | < 1 [5], we can obtain [6]

∞∑
m=1

1

m2

( r

R

)m

cos m(ψ − θ) =

∫ 1

0

1

t
ln

R

R1

dt ≡ M1(x, y), (14)
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where τ = ξ
ζ
t, t ∈ [0, 1], ξ = reiψ, ζ = Reiθ, R2

1 = R2 + t2r2 − 2Rrt cos(ψ − θ).
Thus

w
(i)
1 (x) =

(R2 − r2)ei

πb
grad

∫

C

M1(x, y)f3(y) dyC, (15)

where dyC = R dθ, i = 1, 2.
To solve the problem (11)–(12) we make use of the representation of the solution

of the system of equations (11) in the plane domain [4]:

w
(1)
2 (x) =gradΦ1+r2grad

{[(
α1 + 1

2

)
r ∂

∂r
+ 2α1

]
Φ2 + β1

(
r ∂

∂r
+ 2

)
Φ3

}−
−xr ∂

∂r
[(2α1 − 1)Φ2 + 2β1Φ3] + A0x + B0x̃,

w
(2)
2 (x) =gradΦ4+r2grad

{
α2

(
r ∂

∂r
+ 2

)
Φ2 +

[(
β2 + 1

2

)
r ∂

∂r
+ 2β2

]
Φ3

}−
−xr ∂

∂r
[2α2Φ2 + (2β2 − 1)Φ3] + C0x + D0x̃,

(16)

where α1 = 1
2∆1

(cd−b1a2−∆1), β1 = 1
2∆1

(cb−a2d), ∆1 = a1a2−c2, α2 = 1
2∆1

(cb−a1d),

β2 = 1
2∆1

(cd − a1b2 − ∆1), x̃ = (−x2, x1), Φk(x) are arbitrary harmonic functions,

k = 1, 2, 3, 4, r ∂
∂r

= x1
∂

∂x1
+ x2

∂
∂x2

.
We rewrite the boundary condition (12) in the normal and tangential components

as follows:
{w(i)

2 }n = f (i)
n , {w(i)

2 }s = f (i)
s , (17)

where f
(i)
n = n1f

(i)
1 + n2f

(i)
2 , f

(i)
s = −n2f

(i)
1 + n1f

(i)
2 , i = 1, 2, n = (n1, n2) and s =

(−n2, n1) are, respectively, the normal and the tangent with respect to the circle C.
Harmonic functions Φk will be sought in the form

Φk(x) =
∞∑

m=0

( r

R

)m

(Xmk · νm(ψ)) , k = 1, 2, 3, 4, (18)

where Xmk are unknown two-component vectors, νm(ψ) = (cos mψ, sin mψ).
Assume that the functions f (i)(z) from (12) satisfy all the conditions for their

Fourier series expansion

f (i)
n =

α
(i)
0

2
+

∞∑
m=1

(
α(i)

m · νm(ψ)
)
, f (i)

s =
β

(i)
0

2
+

∞∑
m=1

(
β(i)

m · sm(ψ)
)
, (19)

where α
(i)
m and β

(i)
m are the Fourier coefficients.

We substitute (18) into (16). From the condition (17), taking into account (19) and
passing to the limit as r → R, for the definition of unknown vectors Xmk we obtain for
every m the system of linear equations whose determinant is equal to Dm = A1m+A2,
where A1 = −2α2β1, A2 = (2α1 − 1)(1 − 2β2) + 4α2β1; α1, α2, β1, β2 are the given
constants, m = 1, 2, . . . . From the uniqueness of the above-formulated problem [3] we
can conclude that Dm 6=0. The solution of that system we substitute into (18) and for
every Φk we obtain the expression in the form of a series. Summarizing this series and
reasoning as when deducing formula (14), we obtain [7]

∞∑
m=1

1

mDm

( r

R

)m

cos m(ψ − θ) =
R4

A1

∫ 1

0

1

tp+1
ln

R

R1

dt ≡ M2(x, y),
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where p = A2

A1
, R2

1 = R2 + t2r2 − 2Rrt cos(ψ − θ).
Now we can write the representations (16) and hence the solution of the problem

(11)–(12) in the form of the following integral:

(w
(1)
1 , w

(2)
2 ) =

∫

C

Ψ(x, y)F (y) dyC, x ∈ D, (20)

where Ψ(x, y) = ‖apq‖4×4, F (y) = ‖ϕp‖4×1,

al1 =
[ ∂

∂xl

(
t1r

∂

∂r
+ A2 − γ

)
− r2

R2

∂

∂xl

{ [(
α1 +

1

2

)
r

∂

∂r
+ 2α1

]
γ+

+β1

(
r

∂

∂r
+ 2

)
2α2

}
− xl

R2
A2r

∂

∂r

]
M2(x, y) +

xl

2
R2;

al2 = −al1 + A2
∂

∂xl

M2(x, y) + (xl + x̃l)
R2

2
;

al3 = −al4 = 2β1
R2 − r2

R2

∂

∂xl

(
r

∂

∂r
+ 1

)
M2(x, y), l = 1, 2;

ak1 = −ak2 = 2α2
R2 − r2

R2

∂

∂xk−2

(
r

∂

∂r
+ 1

)
M2(x, y);

ak3 =
[ ∂

∂xk−2

(
t2r

∂

∂r
+ A2 − η

)
− r2

R2

∂

∂xk−2

{
2α2β1

(
r

∂

∂r
+ 2

)
+

+
[(

β2 + 1
2

)
r ∂

∂r
+ 2β2

]
η
}

+ xk−2

R2 A2r
∂

∂r

]
M2(x, y) +

xk−2

2
R2;

ak4 = −ak3 + A2
∂

∂xk−2

M2(x, y) +
xk−2 + x̃k−2

2
R2, k = 3, 4;

η = 1−2α1, γ = 1−2β2, t1 = α1γ+ γ
2
+2α2β1, t2 = β2η+ η

2
+2α2β1; F = (ϕ1, ϕ2, ϕ3, ϕ4),

ϕ1 = f
(1)
n , ϕ2 = f

(1)
s , ϕ3 = f

(2)
n , ϕ4 = f

(2)
s . The functions f

(i)
n and f

(i)
s are defined in

(17), i = 1, 2, dyC = R dθ.
Finally, the solution of the above-posed problem can be represented as follows:

U(x) =

∫

C

K(x, y)Φ(y) dyC + K0,

where K(x, y) = ‖Kkj‖5×5, M2(x, y) = ‖apq‖4×4, Φ(y) = (f3(y), F (y)),

Kkj(x, y)=(1−δ5k)δ1j
(R2 − r2)eα

πb

∂

∂xβ

M1(x, y) + (1−δ5k)(1−δ1j)akj+δ5kδ1j
1

π
ln

1

ρ
,

δkj is the Kronecker symbol, k, j = 1, 2, 3, 4, 5, α =

{
1 if j=1, 2;
2 if j=3, 4;

β =

{
1 if j=1, 3;
2 if j=2, 4.
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