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NON-STATIONERY PROBLEM OF TRANSVERSELY DISPLACED CRACK
PROPAGATION IN AN INFINITE ELASTIC COMPOUND ZONE

Baghaturia G.

Georgian Technical University

In this article the solution of the problem of a half-infinite crack propagation in
a compound elastic zone is considered. The crack extends with constant speed ~v
along the x-axis, which separates two phases with different elastic characteristics. An
antisymmetric tangent forces, oriented along the z1-axis, are applied to the edges of the
crack. The edges of the zones are free from stresses. The components of displacement
along the x1 and y1 axises equal to zero, while the component of displacement along
the z1-axis is the function of x1 and y1; u = 0, v = 0, w = w(x1, y1, t).

The deformation of this type is anti-plane. The solutions of the problems for infinite
area with finite or half-infinite eracks, when the crack extends with constant or variable
speed are considered in the articles [1-3].
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The equation of motion for the zones 1 and 2 will be
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Where w̃ is the component of displacement along the z1-axis and the C21 and C22 are
the wave extension speeds accordingly in the zones 1 and 2.

The boundary conditions will be
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Let us assume that the ~T forces are acting along the edges of the crack. Now we
consider equations (1) and (2) in the moving coordinate system

y = y1, x = x1 − νt (3)
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and introduce the new functions w1(x, y, t) = w̃ 1(x1, y1, t1); w2(x, y, t) = w̃ 2(x1, y1, t1).
Then the equation of motion (1) in the moving coordinate system will be [4]

(
1− v2

C2
21

)
∂2w1

∂x2
+

∂2w1

∂y2
=

1

C2
21

(
−2ν

∂2w1

∂x∂t
+

∂2w1

∂t2

)
,

(
1− v2

C2
22

)
∂2w2

∂x2
+

∂2w2

∂y2
=

1

C2
22

(
−2ν

∂2w2

∂x∂t
+

∂2w2

∂t2

)
.

(4)

The boundary conditions (2) are
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w1 = w, y = 0, x > 0,
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we apply the Laplace transform method w =
∫∞

0
w e−ptdt and the Fourier transform

method w =
1√
2π

∫ ∞

−∞
w eisxdx to the differential equations (4) and to the boundary

conditions (5).
Then the differential equations (4) will be transformed into the equations
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The boundary conditions will be
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Φ+(s) and Φ− are the analytic functions accordingly in the upper and lower half-planes.
Substituting general solutions of the equations (6) into the boundary conditions (7)

and eliminating the constants, we obtain

Φ+(s)− µ1µ2

µ1 − µ2

(γ1thγ1h + γ2thγ2h)Φ−(s) =
2T

ips
(8)
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We carry out the factorization of the functions [5]
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The factorization of the function E(s) comes to the problem of linear conjugation
[6]
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From the equations (8) we obtain
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In accordance with the theorem of Liouville [5] we obtain
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Multiplying the equation (12) by s and moving to the limit as s → 0, we obtain the
meaning of C. Finally we obtain
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In order to determine stress components in the environment of the point x = 0, we
need first to determine the sort of the mode of function in the environment of the point
s →∞.

We obtain

τ yz =
T

ip
√

pχ+(0)

1√
1 + is

Then the stress component in the environment of the crack tip is
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, Im(s) > 0.

The determination of χ+(s) comes to the calculation of the integral on the finite
segment between the branch points and the calculation of residue in the point CR,
which corresponds to the speed of the Rayleigh wave.
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