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1. Statement of the Problem

Using |. Vekua's theory (zero approximation) (see [1]), we consider the equilibrium
equations of a spherical shell for the dynamic case:
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with the homogeneous Dirichlet boundary and Cauchy initial conditions:
u(x,y,t)|,, =0, 8Q:|{=|y|=1, (1.2)

u(x, y.0) = go(x,y), ui(x,y.0)=¢,(xy), (1.3)

where  f :(f11 fa fs)T’ b0 :(¢011¢021¢03)T and ¢, :(¢11’¢12’¢13)T are the known
continuous vector functions, u=(u,,u,,u,)" is the twice continuously differentiable
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function we want to define, £ = 2R™H , H is the semithickness of the shell, Ris the sphere
radius, o isPoisson’sratio, E is Young'smodulus, g, = E/(1+ o).
To solve problem (1.1-3), we use the following semidiscrete scheme (see [2]):

Ua _Zuzk tU A, Yog TV * Uy Au = f(xy.t,) k=12K ,n-1, (14

T 2+v

where 7=T/n (n=2 is anatural number), t, =k7r, v#-2; by u(x,y,t) we denote the
exact solution u, (x,y) at the point t =t, .
From (1.4) we obtain

r? v r?
| + - 21 - + 1+ =
[ 2+|/A0juk+1 [ 2+|/A0juk ( 2+V'AbJuk—1

=-r’Au, +7%f(x,y,t,), k=12K ,n-1. (1.5)

It is known (see [3]) that the operator A, issymmetric and positive definite. Hence it

2
followsthat for 2+v >0 there exists the operator (I + 2T+

-1
AbJ and it is bounded.
v

When k =1, we have u,(x,y)=d,(x,y). We can find u, by using the Taylor formula
with theinitial condition (1.3) and equation (1.1) taken into account:

2

U, =@, +19, +%(f (X’ y,O)— A¢o)'

Thus at each time step the solution of problem (1.1 — 3) reduces to the solution of
an equation of the form

(I + ZT:V A)JU(X, y)=f(xy) (16)

with the homogeneous Dirichlet boundary condition

u(x,y)|aQ =0, 9Q:[X=|yj=1. (L.7)

2. Stability Theorem

We introduce the following spaces.
L, (Q) IS the space of square-integrable function (Hilbert space) in thedomain Q;

H =[L,(Q)® isthe Hilbert space with the scalar product

((U1V)) = (u11V1)+ (1'121\/2)+ (u31V3)1

2)1/2
Ll

and the norm

2
L.
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where u = (u,u,,us) isthe vector function with components from the space L,(Q); (00
and | E||L2 are respectively the scalar product and the norm in the Hilbert space L,(Q);

Cz(ﬁ) is the space of twice continuous differentiable functions in the closure of the
domain Q;

[C2 (5)] * isthe space of twice continuous differentiable vector functionsin Q.

The definition domain of the operator A, hasthe form

p(a)={unlc?(@))* u/ =1
We denote by Zb the extension of the symmetric, positive definite operator A, to the
self-conjugate operator. Since, as we know, Zb IS positive definite, there exists a square

root AY?.
We have the following theorem.

Theorem 1. If the vector functions u,(0 ) and u (0] ) belong to the domain of

definition of the operator ,Zb and the vector functions f(J 0t,) are square summable and
vQ ] -2, 2[ , then the following a priori estimates hold for scheme (1.4):

[ ak_l{(c0 +TECy)|ug| + (c, +7%c,) A:O }+
crza SRICENE (2.1)
|| A | (1+tkak_l){(c4 +r£c3)H;é’2u0H+co Bl |,
+7(0, +1eC,) EQ’ZA:O +C2TZ::||f(DDti)”:|, (2.2)
H A% l<a, {(c0 +1£C,) H AY2y, H + r(%cz + rgcsj AY? A;JO +0, A;JO }+
+czriZ:ak_i (o), 23)

where k=1,2K ,n-1, Au, =u,,-U,; Cy, C, C,, C; and c, are positive constants

dependingon v, ¢, =cc C:S_ZU
T T 1-20

r & :exp(gcgtk).

Proof. The following inequality isvalid:
| Aul” < e2c?((Au,u)), CuOD(A). (2.4)
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Indeed, we have
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where b = 1 .
1-20
Equalities (2.5) and (2.6) clearly imply inequality (2.4).
From (2.4) we have

|Au|<ec| AP, DuD p(A*2)op(A)oH. 2.7)

If the conditions of Theorem 1 are fulfilled, then the following estimates are valid
(see[4], Ch. I1I):

U [ < ol U0 |+ | A;Jo +c, TIZ:H AV (00 ti)” +c, TIZ:H AYZAUL H (2.8)
‘ Au | c, H AV, H+Co A:o +c, T.Zkl“” f(00t)]+c, TZ:” Al (29

R A o 2 | e A 22
+C2Ti2:|| (0ot +sziZ:|| Au; |- (2.10)

~

Taking into account the relation (A'i;gl’z)* 0 AY2A O AY2A, from inequalities
(2.8) and (2.7) we obtain

Au,
T

+c2riu AY (00 ti)H+(¢s’ccz)ri||ui |- (2.11)

[Uea ][ = olluo [+,

Let usintroduce the following notations:

g=|u|, 1=12K k+1
& =c7| A E ()|, 1=12K Kk,
Au,

3 =Cof U |+, , ¢, =(ecc,)r.

T
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Now inequality (2.11) can be rewritten as

K K
EcaSC D E+D 0,
R

from which, by induction, we obtain

k
e ze(Lr,) g + (100 )5, + 3 e )
i=1

which, asis known, is a discrete analogue of Gronwall’ s lemma.
If we take into account that

(1+c, ) =@+ece, 1) e,

then (2.12) implies estimate (2.1).
Estimates (2.2) and (2.3) are proved in asimilar manner.

3. Convergence Theorems

Let us introduce the following spaces.

(2.12)

We define the Hermite norm | ul|, :H AU H in D(,Zb) and obtain the Hilbert space,

which we denote by W?. In a similar manner we define the norm ||u |, =H AV H in

D(,Zé’ 2) and obtain the Hilbert space denoted by W*.

We denote by C([0,T];H) the set of continuous on the interval [0,T] vector

functions f ([} [ t) having values from H.

We denote by C™([0,T];H) (m=1) the set of continuously differentiable on [0, T]

vector functions up to order minclusive from C([0,T];H).

In asimilar manner we consider C([0,T];w*) and c"(j0, T];W?), A=1.2.

We introduce the notation
z(xy)=ulx y.t)-u(xy) k=12K,n.

The following theorem holds true.

Theorem 2. Let u,=4¢,, U =@, +18,, &, ¢,0W?, f(0Ot)Oc(o,T]|;H),

vO]-2,2[. Then

a) if problem (1.1-3) has solutions u(J [t)ac?([o,7];H)1 c([o,T];w?), then

Az,

+

Qﬁl[||zk+l j*o as 1 -0;

b)it f(0Ot)oct(o,T];H) or f(OOt)Oc(o,T];W?), then
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+

Az,
T

max[”zk+l +H'Zé/22"+l j—»O as 1 - 0;

oif f(0Ot)oc(o,T];H) and u(Q Ot)oc?([o,7];H)1 c(o,T];w?), then

Az,

r

+

max [” Zk+1 +H Z\:)Uzzkﬂ

jsc5r, C; =const>0.
I<ksn-1

Theorem 3. Let U, =g, 4, OW?, =4, +19, +— (1(050)- (Rg, + Ag).
¢, A, f(co)ow?, f(0pt)oc?([o,T];H), and vO]-2,2[. Then
a) if problem (1.1-3) has solutions u(0 G t)oc*([o,T];H)1 c(o,T];w?), then

max |2]=6,%, c, =const >0;

b)if u(Q Ot)oc*(o,T);H)1 c?(o.T];w)i c(o,T];w?), then

Az,
T

AL/2 2 —
+HA) Zy jSCJ , ¢, =const>0.

max [
1<ksn-1

The theorems given in this subsection are resulted from Theorem 1.
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