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1. Statement of the Problem 
  

Using I. Vekua’s theory (zero approximation) (see [1]), we consider the equilibrium 
equations of a spherical shell for the dynamic case:  
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with the homogeneous Dirichlet boundary and Cauchy initial conditions: 

( ) 1:,0,, ==Ω∂=
Ω∂

yxtyxu ,                      (1.2) 

( ) ( ) ( ) ( )yxyxuyxyxu t ,0,,,,0,, 10 ϕϕ =′= ,           (1.3) 

where ( )Tffff 321 ,,= , ( )T
0302010 ,, ϕϕϕϕ =  and ( )T

1312111 ,, ϕϕϕϕ =  are the known 

continuous vector functions, ( )Tuuuu 321 ,,=  is the twice continuously differentiable 
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function we want to define, HR 12 −=ε , H is the semithickness of the shell, R is the sphere 
radius, σ  is Poisson’s ratio, E is Young’s modulus, ( )σσ += 10 E . 

To solve problem (1.1–3), we use the following semidiscrete scheme (see [2]):  
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where nT=τ  ( 2≥n  is a natural number), τktk = , 2−≠ν ; by ( )tyxu ,,  we denote the 

exact solution ( )yxuk ,  at the point ktt = . 

From (1.4) we obtain 
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( ) .1,,2,1,,,2
1

2 −=+−= nktyxfuA kk Κττ         (1.5) 

It is known (see [3]) that the operator 0A  is symmetric and positive definite. Hence it 

follows that for 02 >+ν  there exists the operator 
1

0

2

2

−









+

+ AI
ν

τ
 and it is bounded. 

When 1=k , we have ( ) ( )yxyxu ,, 00 ϕ= . We can find 1u  by using the Taylor formula 

with the initial condition (1.3) and equation (1.1) taken into account: 
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Thus at each time step the solution of problem (1.1 – 3) reduces to the solution of 
an equation of the form 
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with the homogeneous Dirichlet boundary condition 
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yxyxu .          (1.7) 

 
2. Stability Theorem  
 

We introduce the following spaces:  
( )Ω2L  is the space of square-integrable function  (Hilbert space) in the domain Ω ; 

( )[ ]3
2 Ω= LH  is the Hilbert space with the scalar product 
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where ( )321 ,, uuuu =  is the vector function with components from the space ( )Ω2L ; ( )⋅⋅ ,  

and 
2L

⋅  are respectively the scalar product and the norm in the Hilbert space ( )Ω2L ; 

( )Ω2C  is the space of twice continuous differentiable functions in the closure of the 
domain Ω ; 

( )[ ] 32 ΩC  is the space of twice continuous differentiable vector functions in Ω . 

The definition domain of the operator 0A  has the form 

( ) ( )[ ]{ }0:32
0 =Ω∈= Ω∂uCuAD . 

We denote by 0

~
A  the extension of the symmetric, positive definite operator 0A  to the 

self-conjugate operator. Since, as we know, 0

~
A  is positive definite, there exists a square 

root 2/1
0

~
A . 

We have the following theorem. 

Theorem 1. If the vector functions ( )⋅⋅ ,0u  and ( )⋅⋅ ,1u  belong to the domain of 

definition of the operator 0

~
A  and the vector functions ( )itf ,, ⋅⋅  are square summable and 

] [2,2−∈ν , then the following a priori estimates hold for scheme (1.4): 
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where 1,,2,1 −= nk Κ , kkk uuu −=∆ +1 ; 3210 ,,, cccc  and 4c  are positive constants 

depending on ν , 23 ccc = , 
σ
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Proof. The following inequality is valid: 
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Indeed, we have  
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where 
σ21

1

−
=b . 

Equalities (2.5) and (2.6) clearly imply inequality (2.4). 
From (2.4) we have 
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If the conditions of Theorem 1 are fulfilled, then the following estimates are valid 
(see [4], Ch. III): 
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Taking into account the relation ( ) 1
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Let us introduce the following notations: 
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Now inequality (2.11) can be rewritten as  
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from which, by induction, we obtain 
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which, as is known, is a discrete analogue of Gronwall’s lemma. 

If we take into account that 

( ) ( ) ktckk eccc 3
311 ε

τ τε ≤+=+ , 

then (2.12) implies estimate (2.1). 
Estimates (2.2) and (2.3) are proved in a similar manner.  

3. Convergence Theorems  

Let us introduce the following spaces.  

We define the Hermite norm uAu 02

~=  in ( )0

~
AD  and obtain the Hilbert space, 

which we denote by 2W . In a similar manner we define the norm uAu 2/1
01

~=  in 

( )2/1
0

~
AD  and obtain the Hilbert space denoted by 1W . 

We denote by [ ]( )HTC ;,0  the set of continuous on the interval [ ]T,0  vector 

functions ( )tf ,, ⋅⋅  having values from H. 

We denote by [ ]( )HTC m ;,0  ( )1≥m  the set of continuously differentiable on [ ]T,0  

vector functions up to order m inclusive from [ ]( )HTC ;,0 . 

In a similar manner we consider [ ]( )λWTC ;,0  and [ ]( )λWTC m ;,0 , 2,1=λ .  
We introduce the notation  

( ) ( ) ( ) nkyxutyxuyxz kkk ,,2,1,,,,, Κ=−= . 

The following theorem holds true. 
Theorem 2. Let 00 ϕ=u , 101 τϕϕ +=u , 2

10 , W∈ϕϕ , ( ) [ ]( )HTCtf ;,0,, ∈⋅⋅ , 

] [2,2−∈ν . Then 

a) if problem (1.1–3) has solutions ( ) [ ]( ) [ ]( )22 ;,0;,0,, WTCHTCtu Ι∈⋅⋅ , then 
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The theorems given in this subsection are resulted from Theorem 1. 
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